Свойства умножения вектора на число

5. .

6.

7.

8.

Упражнение. Даны векторы . Найдите вектор

Определение 5. Множество всех п – мерных арифметических векторов, в котором определены операции сложения векторов и умножения вектора на число, удовлетворяющее восьми свойствам, называется арифметическим п – мерным векторным пространством и обозначается .

Определение 6. Некоторое множество U образует линейное пространство, если для любых его элементов определена операция сложения и для каждого элемента и любого действительного числа определено произведение причём эти операции удовлетворяют свойствам 1-8 (см. выше).

Линейным пространством является, например, множество всех алгебраических многочленов степени, не превышающей натурального числа п.

Определение 7. Подмножество S линейного пространства U называется подпространством, если выполнены следующие два условия:

1. для любых двух векторов и из S их сумма также принадлежит S

2. для любого вектора из S и любого действительного числа произведение также принадлежит S.

Очевидно, что подпространство S само является линейным пространством относительно операций сложения и умножения на число, определённых в U. У любого пространства существуют два подпространств, называемые тривиальными. Это само пространство U и нулевое подпространство (состоящее из одного нулевого элемента).

Например, в R3 (множество векторов) линейным подпространством будут все плоскости и все прямые, проходящие через начало координат.

Упражнение. Выяснить является ли множество S – множество решений неравенства линейным подпространством в R3.

Определение 8. Вектор называется линейной комбинацией векторов

, если

,

где - действительные числа.

Определение 9. Множество всех линейных комбинаций векторов называется линейной оболочкой векторов и обозначается .

Упражнение. Найти линейную оболочку векторов и проверьте, принадлежит ли этой оболочке вектор , если .

3.2. Базис и размерность линейного пространства. Координаты вектора в данном базисе

Определение 10. Векторы называются линейно зависимыми, если существуют такие числа , не равные одновременно нулю, что

. (1)

Если равенство выполняется только при , то векторы называются линейно независимыми.

Пример. Система векторов линейно зависима, так как .

Определение 11. Векторы называются коллинеарными, если они параллельны одной прямой, т.е. или .

Утверждение. Система, содержащая два вектора , линейно зависима в том и только том случае, когда эти векторы коллинеарны.

Доказательство. Если оба вектора равны нулю, то они, очевидно, линейно зависимы и коллинеарны. Пусть . Допустим сначала, что векторы линейно зависимы. Тогда для некоторых x и y, не равных нулю одновременно. Если . Но тогда и , т.к. . Если же , то . Предположим теперь, что векторы коллинеарны, т.е. . Т.к. их линейная комбинация то векторы линейно зависимы.

Определение 12. Три вектора в R3, лежащие в одной плоскости или параллельные одной плоскости, называются компланарными.

Упражнение. Доказать, что три вектора в R3 линейно зависимы в том и только том случае, когда они компланарны.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: