Молекулярная физика

План-конспект семинарских занятий

Часть 1

Красноярск 2006

Введение

Молекулярная физика преподается студентам физических специальностей как курс современной физики, демонстрирующий возможности таких универсальных методов, как термодинамический и статистический. Эти методы находят широкое применение не только в различных областях физики, но также в химии, биологии, биофизике, медицине, экономике и сфере гуманитарных наук. Раскрытие сущности статистического подхода на материале собственно молекулярной физики и примерах-аналогах из других областей реальной жизни является одной из главных задач семинарских занятий первой половины семестра.

Молекулярная статистика требует определенной математической подготовки студентов. Если в области дифференциального и интегрального исчисления стартовые знания, умения и навыки обнадеживают, то в области теории вероятностей они полностью отсутствуют. Поэтому основные понятия, аксиомы и правила теории вероятностей включены в «План-конспект»а кроме того в тексте приведены ссылки на дополнительные источники информации.

Многие задачи молекулярной физики имеют формализованные решения. Способ решения – действие по процедуре. Знание процедуры и умение ее выполнять позволяют с вероятностью, близкой к единице, решить задачу. И наоборот, незнание делает задачу для студента неразрешимой. План-конспект по каждой из восьми тем раздела «Статистический подход к описанию молекулярных явлений» содержит установочную теоретическую часть (физические идеи, проблематика, список определений и процедур), методические указания и набор задач.

Целевое назначение данного методического пособия – обеспечить максимальную согласованность содержания лекционного курса и семинарских занятий.

Список литературы

  1. Гмурман В.Е. Теория вероятностей и математическая статистика. – М.: Высш. шк., 2000.
  2. Иродов И.Е. Задачи по общей физике. – М.: Бином, 1998.

3. Матвеев А.Н. Молекулярная физика. – М.: Высш. шк., 1987.

4. Москвич О.И., Бомбенко О.Н. Общая физика. Молекулярная физика: Структурированный конспект лекций. Ч.1. – Красноярск, РИС КрасГУ, 2006.

5. Рейф Ф. Статистическая физика. Берклеевский курс физики. Т.5. – М.: Наука, 1986.

6. Сборник задач по общему курсу физики. Термодинамика и молекулярная физика. /Под ред. Д.В.Сивухина. – М.: Наука, 1976.

7. Сивухин Д.В. Общий курс физики. Т.2. – М.: Наука, 1979.

Основные формулы элементарной комбинаторики

Число способов размещения m различных предметов по n местам:

(1.3)

Число способов размещения n различных предметов по n местам (число перестановок):

Г2=n! (1.4)

Число способов размещения m неразличимых предметов по n местам:

. (1.5)

Число способов, которыми можно выбрать m различных предметов из n различных предметов, называется числом сочетаний и определяется выражением

(1.6)

Непрерывное распределение вероятности. Плотность вероятности. Условие нормировки вероятности

Если состояние физической системы характеризуется параметром j, случайно принимающим любые значения от j0 до j1, то определение вероятности (1.1) лишено смысла, поскольку множество значений параметра не является счетным. В этом случае вероятность определяется в дифференциальной форме:

(1.7)

Утверждается, что dP(j) пропорциональна величине достаточно малого интервала изменений переменной dj, а коэффициент пропорциональности f(j) не зависит от величины этого интервала и называется плотностью вероятности [1,5]:

диаметр молекулы CO2. Атмосферное давление P2 = 735 мм. рт. ст. Процесс считать изотермическим при температуре 15°C.

О т в е т ы

9.1. , .

9.2. .

9.3.

для плоскопараллельного слоя =

для сферического слоя ,

для цилиндрического слоя .

9.4. .

9.5..

9.6..

9.7..

Условие нормировки есть математическая запись утверждения, что если физическая система существует, то она находится в каком-либо из доступных ей состояний, характеризующихся параметром j. Это событие является достоверным и его вероятность равна единице.

З а д а ч и

1.1. В сосуде находятся 5 молекул газа. Мысленно разобьем сосуд на две равные части. Каждая из молекул может находиться в выделенной половине объема или не находиться в ней. Рассмотреть "макроскопическое" состояние, когда m молекул газа находятся в выделенной половине сосуда, и найти число микроскопических состояний Гm, с помощью которых оно реализуется. Принять m равным 0, 1, 2, 3, 4, 5. Определить также общее число микросостояний Г0 и частоту реализации всех рассмотренных «макросостояний». Термин «макроскопическое состояние» здесь использован условно, поскольку в системе всего 5 частиц, и она, строго говоря, не является статистической. По этой же причине вместо «вероятность» употребляется термин «частота».

1.2. В системе из n частиц со спином 1/2 в отсутствии внешнего магнитного поля спин каждой частицы может быть равновероятно ориентирован либо вверх, либо вниз.

а) Найти вероятность Pn(m) реализации состояния, когда m спинов направлены вверх.

б) Построить гистограмму зависимости P(m) для n =6. Как будет изменяться вид распределения P(m) при увеличении чисел n и m? Чему равно наивероятнейшее значение m?

1.3. Состояние системы характеризуется случайной величиной x с известным распределением вероятности:

а) б)

в) г)

, (9.5)

где Q – масса ежесекундно протекающего через сечение трубы газа, r – радиус трубы, r - плотность газа, h - вязкость, P – давление газа;

б) кнудсеновское течение (для ультраразреженного газа, >> 2r, через капилляры) описывается уравнением

, (9.6)

где N – поток молекул через сечение трубки S, n – концентрация разреженного газа.

З а д а ч и

9.1. На основе обобщённого уравнения переноса получить зависимость коэффициентов переноса (D,k,h) от микроскопических и макроскопических параметров системы.

9.2. Для измерения теплопроводности азота им наполнили пространство между двумя длинными коаксиальными цилиндрами, радиусы которых r1 = 0,5 см и r2 = 2 см. Внутренний цилиндр равномерно нагревается спиралью, по которой проходит ток силой i = 0,1 А. Сопротивление спирали, приходящееся на единицу длины цилиндра, равно R = 0,1 Ом. Внешний цилиндр поддерживается при температуре t2 = 0°C. При установившемся процессе оказалось, что температура первого цилиндра t1 = 93°C. Найти газокинетический диаметр молекулы азота. Давление газа таково, что конвекцией можно пренебречь.

9.3. Пользуясь полученной в задаче 9.1. зависимостью k(T), найти стационарное распределение температуры в плоско-параллельном слое газа толщины l, на границах которого поддерживаются постоянные температуры T1 и T2. Нагревание производят таким образом, что конвекции не возникает. Найти также стационарное распределение температуры для сферичес-

б)

С ростом числа частиц в системе n гистограмма переходит в график непрерывного распределения вероятности. Кривая представляет собой очень высокий и узкий пик, максимум которого находится при mн = n /2.

1.3. а) б) А=2; в) г)

1.5. Площади под кривыми f(x) во всех случаях одинаковы и равны единице. Это условие нормировки плотности вероятности.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: