double arrow

Вегетативная рефлекторная дуга

1-ый нейрон оканчивается в боковых рогах спинного мозга.

2-ой нейрон выходит за пределы сегмента и оканчиваются в преганглионарных/постганглионарных волокнах.

3-ий нейрон начинается от паравертебральных/превертебральных узлов

Рефлекторная дуга вегетативной нервной системы состоит из чувстви­тельного (афферентного, сенсорного), ассоциативного (вставочного) и эффекторного (эфферентного) звеньев. Чувствительное (первое) звено образо­вано клетками спинномозговых или периферических ганглиев. Ассоциатив­ное (второе) звено представлено преганглионарными нейронами, располо­женными в боковых рогах спинного мозга, в продолговатом и в среднем мозге. Отростки вставочных преганглионарных нейронов выходят из спин­ного мозга в составе вентральных корешков, вступают в соматические нервные стволы и отсюда достигают узлов пограничного симпатического ствола или парасимпатических узлов в органах, где переключаются на эффекторные клетки. Эффекторное (третье) звено образовано эффекторными клетками периферических ганглиев.

Таким образом, эффекторный путь простой вегетативной рефлекторной является двухнейронным. Первый нейрон находится в составе одного из вегетативных ядер ЦНС, а второй — в вегетативном узле, расположенном на периферии. Аксоны центральных вегетативных нейронов выходят из спинного мозга в составе передних корешков спинномозговых нервов, из головного мозга — в составе корешков черепных нервов и достига­ют вегетативного узла. Эти аксоны называются преганглионарными нервными волокнами. Аксоны периферических вегетативных нейронов, направляющиеся к рабоче­му органу, являются постганглионарными.




№ 37 Гисто-функциональная характеристика и особенности организации серого и белого вещества в спинном мозге, стволе мозжечка и больших полушариях головного мозга.

Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди глубокой серединной щелью, а сзади – соединительнотканной перегородкой. Внутренняя часть органа темнее — это его серое вещество. На периферии спинного мозга располагается более светлое белое вещество.

Серое веществоспинного мозга состоит из тел нейронов, безмиелиновых и тонких миелиновых волокон и нейроглии. Основной составной час­тью серого вещества, отличающей его от белого, являются мультиполярные нейроны.



Выступы серого вещества принято называть рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога. В процессе развития спинного мозга из нервной трубки образуются нейроны, группирующиеся в 10 слоях, или в пластинах. Для человека характерна следующая архитектоникауказанных пластин: I—V пластины соответствуют задним рогам, VI—VII пластины — промежуточной зоне, VIII—IX пластины — передним рогам, X пластина — зона околоцентрального канала.

Серое вещество мозга состоит из мультиполярных нейронов трех типов. Пер­вый тип нейронов является филогенетически более древним и характеризуется не­многочисленными длинными, прямыми и слабо ветвящимися дендритами (изоден-дритический тип). Второй тип нейронов имеет большое число сильно ветвящихся дендритов, которые переплетаются, образуя «клубки» (идиодендритический тип). Третий тип нейронов по степени развития дендритов занимает промежуточное положение между первым и вторым типами.

Белое веществоспинного мозга представляет собой совокупность про­дольно ориентированных преимущественно миелиновых волокон. Пучки нервных волокон, осуществляющие связь между различными отделами не­рвной системы, называются проводящими путями спинного мозга.

Мозжечок. Представляет собой центральный орган равновесия и координации движений. Он связан со стволом мозга афферентными и эфферентными проводящими пучками, образующими в совокупности три пары ножек мохжечка. На поверхности мозжечка много извилин и бороздок, ко­торые значительно увеличивают ее площадь. Борозды и извилины создают на разрезе характерную для мозжечка картину «древа жизни». Основная масса серого вещества в мозжечке распо­лагается на поверхности и образует его кору. Меньшая часть серого веще­ства лежит глубоко в белом веществе в виде центральных ядер. В центре каж­дой извилины имеется тонкая прослойка белого вещества, покрытая слоем серого вещества — корой.

В коре мозжечка различают три слоя: наружный — молекулярный, средний — ганглионарный слой, или слой грушевидных нейронов, и внутренний — зернистый.

Большие полушария. Полушарие большого мозга снаружи покрыто тонкой пластинкой серого вещества - корой большого мозга.

Кора большого мозга (плащ) представлена серым веществом, расположенным по периферии полушарий большого мозга.

Помимо коры, образующей поверхностные слои конечного мозга, серое вещество в каждом из полушарий большого мозга залегает в виде отдельных ядер, или узлов. Эти узлы находятся в толще белого вещества, ближе к основанию мозга. Скопления серого вещества в связи с их положением получили наименование базальных (подкорковых, центральных) ядер (узлов). К базальным ядрам полушарий относят полосатое тело, состоящее из хвостатого и чечевицеобразного ядер; ограду и миндалевидное тело.

№ 39 Мозжечок. Строение и функциональная характеристика. Нейронный состав коры мозжечка. Глиоциты. Межнейрональные связи.

Мозжечок. Представляет собой центральный орган равновесия и координации движений. Он связан со стволом мозга афферентными и эфферентными проводящими пучками, образующими в совокупности три пары ножек мохжечка. На поверхности мозжечка много извилин и бороздок, ко­торые значительно увеличивают ее площадь. Борозды и извилины создают на разрезе характерную для мозжечка картину «древа жизни». Основная масса серого вещества в мозжечке распо­лагается на поверхности и образует его кору. Меньшая часть серого веще­ства лежит глубоко в белом веществе в виде центральных ядер. В центре каж­дой извилины имеется тонкая прослойка белого вещества, покрытая слоем серого вещества — корой.

В коре мозжечка различают три слоя: наружный — молекулярный, средний — ганглионарный слой, или слой грушевидных нейронов, и внутренний — зернистый.

Ганглиозный слой содержит грушевидные нейроны. Они имеют нейриты, которые, покидая кору мозжечка, образуют начальное звено его эфферентных тормозных путей. От грушевидного тела в молекулярный слой отходят 2—3 ден­дрита, которые пронизывают всю толщу молекулярного слоя. От основания тел этих клеток отходят нейриты, проходящие через зер­нистый слой коры мозжечка в белое вещество и заканчивающиеся на клет­ках ядер мозжечка. Молекулярный слой содержит два основных вида нейронов: кор-зинчатые и звездчатые. Корзинчатые нейроны находят­ся в нижней трети молекулярного слоя. Их тонкие длинные дендриты ветвятся преимущественно в плоскости, расположенной поперечно к извилине. Длинные нейриты клеток всегда идут поперек извилины и параллельно по­верхности над грушевидными нейронами.

Звездчатые нейроны лежат выше корзинчатых и эывают двух типов. Мелкие звездчатые нейроны снабжены тонкими коротки­ми дендритами и слаборазветвленными нейритами, образующими синапсы. Крупные звездчатые нейроны имеют длинные и сильно разветвленные дендриты и нейриты.

Зернистый слой. Первым типом клеток этого слоя можно считать зерновидные нейроны, или клетки-зерна. Клетка имеет 3—4 коротких дендрита, заканчивающихся в этом же слое концевыми вет­влениями в виде лапки птицы.

Нейриты клеток-зерен проходят в молекулярный слой и в нем делятся на две ветви, ориентированные параллельно поверхности коры вдоль извилин мозжечка.

Вторым типом клеток зернистого слоя мозжечка являются тормозные большие звездчатые нейроны. Различают два вида таких клеток: с короткими и длинными нейритами. Нейроны с ко­роткими нейритами лежат вблизи ганг-лионарного слоя. Их разветвленные дендриты распространяются в молеку­лярном слое и образуют синапсы с параллельными волокнами — аксонами клеток-зерен. Нейриты направляются в зернистый слой к клубочкам моз­жечка и заканчиваются синапсами на концевых ветвлениях дендритов кле­ток-зерен. Немногочисленные звездчатые нейроны с длинными нейрита­ми имеют обильно ветвящиеся в зерни­стом слое дендриты и нейриты, выходящие в белое вещество.

Третий тип клеток составляют веретеновидные горизонтальные клетки. Они имеют небольшое вытянутое тело, от которого в обе стороны отходят длинные горизонтальные дендри­ты, заканчивающиеся в ганглионарном и зернистом слоях. Нейриты же этих клеток дают коллатерали в зернистый слой и уходят в белое вещество.

Глиоциты. Кора мозжечка содержит различные глиальные элементы. В зер­нистом слое имеются волокнистые и протоплазматические астроциты. Ножки отростков волокнистых астроцитов образуют периваскулярные мембраны. Во всех слоях в мозжечке имеются олигодендроциты. Особенно богаты этими клет­ками зернистый слой и белое вещество мозжечка. В ганглионарном слое меж­ду грушевидными нейронами лежат глиальные клетки с темными ядрами. От­ростки этих клеток направляются к поверхности коры и образуют глиальные волокна молекулярного слоя мозжечка.

Межнейрональные связи. Афферентные волокна, поступающие в кору мозжечка, представлены двумя видами — моховидными и так называемыми лазящими волокнами.

Моховидные волокна идут в составе оливомозжечкового и мостомозжечкового путей и опосредованно через клетки-зерна оказывают на грушевидные клетки возбуждающее действие.

Лазящие волокна поступают в кору мозжечка, по-видимому, по спинно-мозжечковому и вестибуломозжечковому путям. Они пересекают зернистый слой, прилегают к грушевидным нейронам и стелются по их дендритам, заканчиваясь на их поверхности си­напсами. Лазящие волокна передают возбуждение непосредственно грушевидным нейронам.

№ 38 Головной мозг. Общая морфо-функциональная характеристика больших полу­шарий. Эмбриогенез. Нейронная организация коры больших полушарий. Понятие о колонках и модулях. Миелоархитектоника. Возрастные изменения коры.

В головном мозге различают серое и белое вещество, но распределение этих двух составных частей здесь значительно сложнее, чем в спинном моз­ге. Большая часть серого вещества головного мозга располагается на повер­хности большого мозга и в мозжечке, образуя их кору. Меньшая часть обра­зует многочисленные ядра ствола мозга.

Строение.Кора большого мозга представлена слоем серого вещества. Наиболее сильно развита она в передней централь­ной извилине. Обилие борозд и извилин значительно увеличивает площадь серого вещества головного мозга.. Различные участки ее, отли­чающиеся друг от друга некоторыми особенностями расположения и стро­ения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями. Они представ­ляют собой места высшего анализа и синтеза нервных импульсов. Резко очерченные границы между ними отсутствуют. Для коры характерно распо­ложение клеток и волокон слоями.

Развитие коры большихполушарий (неокортекса) человека в эмбриогенезе происходит из вентрикулярной герминативной зоны конечного мозга, где расположены малоспециализированные пролиферирующие клетки. Из этих клеток дифференцируются нейроциты неокортекса. При этом клетки утрачивают способность к делению и мигрируют в фор­мирующуюся корковую пластинку. Вначале в корковую пластинку поступают нейроциты будущих I и VI сло­ев, т.е. наиболее поверхностного и глубокого слоев коры. Затем в нее встраиваются в направлении изнутри и кнаружи последовательно нейроны V, IV, III и II слоев. Этот процесс осуществляется за счет образования клеток в небольших уча­стках вентрикулярной зоны в различные периоды эмбриогенеза (гетерохрон-но). В каждом из этих участков образуются группы нейронов, последователь­но выстраивающихся вдоль одного или нескольких волокон радиальной глии в виде колонки.

Цитоархитектоника коры большого мозга.Мультиполярные нейроны коры весьма разнообразны по форме. Среди них можно выделить пирамид­ные, звездчатые, веретенообразные, паукообразные и горизонтальные нейроны.

Нейроны коры расположены нерезко отграниченными слоями. Каждый слой характеризуется преобладанием какого-либо одного вида клеток. В дви­гательной зоне коры различают 6 основных слоев: I — молекулярный, II — наружный зернистый, III — nuрамидных нейронов, IV — внутренний зернистый, V — ганглионарный, VI — слой поли­морфных клеток.

Молекулярный слой коры содержит небольшое количество мелких ассоци­ативных клеток веретеновидной формы. Их нейриты про­ходят параллельно поверхности мозга в составе тангенциального сплетения нервных волокон молекулярного слоя.

Наружный зернистый слой образован мелкими нейронами, имеющими округлую, угловатую и пирамидальную форму, и звездчатыми нейроцитами. Дендриты этих клеток поднимаются в молеку­лярный слой. Нейриты или уходят в белое вещество, или, образуя дуги, также поступают в тангенциальное сплетение волокон молекулярного слоя.

Самый широкий слой коры большого мозга — пирамидный. От верхушки пирамидной клетки отходит главный дендрит, который располагается в молекулярном слое. Нейрит пирамидной клетки всегда отходит от ее основания.

Внутренний зернистый слой образован мелкими звездчатыми нейронами. В его состав входит большое количество горизонтальных волокон.

Ганглионарный слой коры образован крупными пирамидами, причем область прецентральной извилины содержит гигантские пирамиды.

Слой полиморфных клеток образован нейронами различной формы.

Модуль. Структурно-функцио­нальной единицей неокортекса является модуль. Модуль организован вокруг кортико-кортикального волокна, представляющего собой волокно, идущее либо от пирамидных клеток того же полушария (ассоциативное волокно), либо от противоположного (комиссуральное).

Тормозная система модуля представлена следующими типами нейронов: 1) клетки с аксональной кисточкой; 2) корзинчатые нейроны; 3) аксоаксональные нейроны; 4) клетки с двойным букетом дендритов.

Миелоархитектоника коры.Среди нервных волокон коры полушарий большого мозга можно выделить ассоциативные волокна, связывающие от­дельные участки коры одного полушария, комиссуральные, соединяющие кору различных полушарий, и проекционные волокна, как афферентные, так и эфферентные, которые связывают кору с ядрами низших отделов цент­ральной нервной системы.

Возрастные изменения. На 1-м году жизни наблюдаются типизация формы пирамидных и звез­дчатых нейронов, их увеличение, развитие дендритных и аксонных арборизаций, внутриансамблевых связей по вертикали. К 3 годам в ансамблях вы­являются «гнездные» группировки нейронов, более четко сформированные вертикальные дендритные пучки и пучки радиарных волокон. К5—6 годам нарастает полимор­физм нейронов; услож­няется система внутриансамблевых связей по горизонтали за счет роста в длину и разветвлений боковых и базальных дендритов пирамидных нейро­нов и развития боковых терминалей их апикальных дендритов. К 9—10 го­дам увеличиваются клеточные группировки, значительно усложняется структура короткоаксонных нейронов, и расширяется сеть аксонных колла-тералей всех форм интернейронов. К 12—14 годам в ансамблях четко обозначаются специализированные формы пирамидных нейронов, все типы интернейронов достигают высокого уровня дифференцировки. К 18 годам ансамблевая орга­низация коры по основным параметрам своей архитектоники достигает уровня таковой у взрослых.

№ 41 Артерии. Морфо-функциональная характеристика. Классификация, развитие, строение и функция артерий. Взаимосвязь структуры артерий и гемодинамических условий. Возрастные изменения.

Классификация.По особенностям строения артерии бывают трех типов: эластического, мышечного и смешанного (мышечно-эластичес-кого).

Артерии эластического типа характеризуются вы­раженным развитием в их средней оболочке эластических структур (мемб­раны, волокна). К ним относятся сосуды крупного калибра, такие как аор­та и легочная артерия. Артерии крупного калибра выполняют главным образом транс­портную функцию. В качест­ве примера сосуда эластического типа рассматривается строение аорты.

Внутренняя оболочка аорты включает эндотелий, подэндотелиальный слой и сплетение эластических волокон. Эндотелий аорты человека состоит из клеток, различных по форме и размерам, расположенных на базальной мембране. В эндотелиальных клетках слабо развита эндоплазматическая сеть гранулярного типа. Подэндотелиальный слой состоит из рыхлой тонкофибриллярной соединительной ткани, богатой клетками звездчатой формы. В последних обнаруживается большое количество пиноцитозных пузырьков и микрофиламентов, а также эндо­плазматическая сеть гранулярного типа. Эти клетки поддер­живают эндотелий. В подэндотелиальном слое встречаются гладкие мышечные клетки (гладкие миоциты).

Глубже подэндотелиального слоя в составе внутренней оболочки рас­положено густое сплетение эластических волокон, соответствующее внутрен­ней эластической мембране.

Внутренняя оболочка аорты в месте отхождения от сердца образует три карманоподобные створки («полулунные клапаны»).

Средняя оболочка аорты состоит из большого количества эластических окончатых мембран, связанны между собой эластическими волокнами и образующих единый эластичес­кий каркас вместе с эластическими элементами других оболочек.

Между мембранами средней оболочки артерии эластического типа за­легают гладкие мышечные клетки, косо расположенные по отно­шению к мембранам.

Наружная оболочка аорты построена из рыхлой волокнистой со­единительной ткани с большим количеством толстых эластических и коллагеновых волокон.

К артериям мышечного типа относятся преимуществен­но сосуды среднего и мелкого калибра, т.е. большинство артерий организма (артерии тела, конечностей и внутренних органов).

В стенках этих артерий имеется относительно большое количество глад­ких мышечных клеток, что обеспечивает дополнительную нагнетающую силу их и регулирует приток крови к органам.

В состав внутренней оболочки входят эндотелий с базальной мембраной, подэндотелиальный слой и внутренняя эластическая мембрана.

Средняя оболочка артерии содержит гладкие мышечные клетки, между которыми находятся соединительнотканные клетки и волокна (коллагеновые и элас­тические). Коллагеновые волокна образуют опорный каркас для гладких миоцитов. В артериях обнаружен коллаген I, II, IV, V типа. Спиральное расположение мышечных клеток обеспечивает при сокращении уменьшение объема сосуда и проталкивание крови. Эластические волокна стенки артерии на границе с наружной и внут­ренней оболочками сливаются с эластическими мембранами.

Гладкие мышечные клетки средней оболочки артерий мышечного типа своими сокращениями поддерживают кровяное давление, регулируют приток крови в сосуды микроциркуляторного русла органов.

На границе между сред­ней и наружной оболочками располагается наружная эластическая мембрана. Она состоит из эластических волокон.

Наружная оболочка состоит из рыхлой волокнистой соединитель­ной ткани. В этой оболочке постоянно встре­чаются нервы и кровеносные сосуды, питающие стенку.

Артерии мышечно-эластического типа. К ним относятся, в частности, сонная и подключичная артерии. Внутренняя оболочка этих сосудов состоит из эндотелия, расположенного на базальной мембране, подэндотелиального слоя и внутренней эластической мембра­ны. Эта мембрана располагается на границе внутренней и средней оболочек.

Средняя оболочка артерий смешанного типа состоит из гладких мышечных клеток, спирально ориентированных эластических волокон и окончатых эластических мембран. Между гладкими мышечными клетками и эластическими элементами обнаруживается не­большое количество фибробластов и коллагеновых волокон.

В наружной оболочке артерий можно выделить два слоя: внутрен­ний, содержащий отдельные пучки гладких мышечных клеток, и наружный, состоящий преимущественно из продольно и косо расположенных пучков коллагеновых и эластических волокон и соединительнотканных клеток.

Возрастные изменения. Развитие сосудов под влиянием функциональной нагрузки заканчивается примерно к 30 годам. В дальнейшем в стенках ар­терий происходит разрастание соединительной ткани, что ведет к их уп­лотнению. После 60—70 лет во внутренней оболочке всех артерий обнаруживаются очаговые утолщения коллагеновых волокон, в ре­зультате чего в крупных артериях внутренняя оболочка по размерам при­ближается к средней. В мелких и средних артериях внутренняя оболочка раз­растается слабее. Внутренняя эластическая мембрана с возрастом постепен­но истончается и расщепляется. Мышечные клетки средней оболочки атро­фируются. Эластические волокна подвергаются зернистому распаду и фраг­ментации, в то время как коллагеновые волокна разрастаются. Одновремен­но с этим во внутренней и средней оболочках у пожилых людей появляют­ся известковые и липидные отложения, которые прогрессируют с возрас­том. В наружной оболочке у лиц старше 60—70 лет возникают продольно лежащие пучки гладких мышечных клеток.

№ 42 Лимфатические сосуды. Классификация. Морфо-функциональная характеристика. Источники развития. Строение и функции лимфатических капилляров и интра- и экстраорганных лимфатических сосудов.

Лимфатические сосуды — часть лимфатической системы, включающей в себя еще и лимфатические узлы. В функциональном отношении лимфатичес­кие сосуды тесно связаны с кровеносными, особенно в области расположе­ния сосудов микроциркуляторного русла. Именно здесь происходят образова­ние тканевой жидкости и проникновение ее в лимфатическое русло.

Через мелкие лимфоносные пути осуществляются постоянная миграция лимфоцитов из кровотока и их рециркуляция из лимфатических узлов в кровь.

Классификация.Среди лимфатических сосудов различают лимфатичес­кие капилляры, интра- и экстраорганные лимфатические сосуды, отводящие лимфу от органов, и главные лимфатические стволы тела — грудной проток и правый лимфатический проток, впадающие в крупные вены шеи. По стро­ению различают лимфатические сосуды безмышечного (волокнисто мышечного типов.

Лимфатические капилляры.Лимфатические капилляры — начальные отделы лимфатической системы, в которые из тканей поступает тканевая жидкость вместе с продуктами обмена веществ.

Лимфатические капилляры представляют собой систему замкнутых с одного конца трубок, анастомозирующих друг с другом и пронизывающих органы. Стен­ка лимфатических капилляров состоит из эндотелиальных клеток. Базальная мембрана и перициты в лимфатических капиллярах отсутствуют. Эндотелиальная выс­тилка лимфатического капилляра тесно связана с окружающей соединитель­ной тканью с помощью стропных, или фиксирующих, филаментов, которые вплетаются в коллагеновые волокна, расположенные вдоль лимфатических капилляров. Лимфатические капилляры и на­чальные отделы отводящих лимфатических сосудов обеспечивают гематолимфатическое равновесие как необходимое условие микроциркуляциив здоровом организме.

Отводящие лимфатические сосуды.Основной отличительной особеннос­тью строения лимфатических сосудов является наличие в них клапанов и хорошо развитой наружной оболочки. В местах расположения клапанов лим­фатические сосуды колбовидно расширяются.

Лимфатические сосуды в зависимости от диаметра подразделяются на мелкие, средние и крупные. Эти сосуды по своему строению могут быть безмышечными и мышечными.

В мелких сосудах мышечные элементы отсутствуют и их стенка со­стоит из эндотелия и соединительнотканной оболочки, кроме клапанов.

Средние и крупные лимфатические сосуды имеют три хорошо развитые оболочки: внутреннюю, среднюю и на­ружную.

Во внутренней оболочке, покрытой эндотелием, находятся продоль­но и косо направленные пучки коллагеновых и эластических волокон. Дупликатура внутренней оболочки формирует многочисленные клапаны. Учас­тки, расположенные между двумя соседними клапанами, называются кла­панным сегментом, или лимфангионом. В лимфангионе выделяют мышечную манжетку, стенку клапанного синуса и область прикрепления клапана.

Средняя оболочка. В стенке этих сосудов находятся пучки гладких мышечных клеток, имеющие циркуляр­ное и косое направление. Эластические волокна в средней оболочке могут различаться по количеству, толщине и направлению.

Наружная обо­лочка лимфатических сосудов образована рыхлой волокнистой неоформлен­ной соединительной тканью. Иногда в наружной оболочке встречаются отдельные продольно направленные гладкие мышечные клетки.

В качестве примера строения крупного лимфатического сосуда рассмот­рим один из главных лимфатических стволов — грудной лимфатический про­ток.Внутренняя и средняя оболочки выражены относительно слабо. Цитоплазма эндотелиальных клеток богата пиноцитозными пузырьками. Это указывает на ак­тивный трансэндотелиальный транспорт жидкости. Базальная часть клеток неровная. Сплошной базальной мембраны нет.

В подэндотелиальном слое залегают пучки коллагеновых фибрилл. Несколько глубже находятся единичные гладкие мышечные клетки, имею­щие во внутренней оболочке продольное, а в средней — косое и циркуляр­ное направление. На границе внутренней и средней оболочек иногда встре­чается плотное сплетение тонких эластических волокон, которое сравнива­ют с внутренней эластической мембраной.

В средней оболочке расположение эластических волокон в основ­ном совпадает с циркулярным и косым направлением пучков гладких мы­шечных клеток.

Наружная оболочка грудного лимфатического прото­ка содержит продольно лежащие пучки гладких мышечных клеток, разделенные прослойками со­единительной ткани.

№ 40 Спинной мозг. Морфо-Функциональная характеристика. Развитие. Строение серого и белого вещества. Нейронный состав. Чувствительные и двигательные пути спинного мозга, как примеры рефлекторных дут.

Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди глубокой серединной щелью, а сзади – соединительнотканной перегородкой. Внутренняя часть органа темнее — это его серое вещество. На периферии спинного мозга располагается более светлое белое вещество.

Серое веществоспинного мозга состоит из тел нейронов, безмиелиновых и тонких миелиновых волокон и нейроглии. Основной составной час­тью серого вещества, отличающей его от белого, являются мультиполярные нейроны.

Выступы серого вещества принято называть рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога. В процессе развития спинного мозга из нервной трубки образуются нейроны, группирующиеся в 10 слоях, или в пластинах. Для человека характерна следующая архитектоникауказанных пластин: I—V пластины соответствуют задним рогам, VI—VII пластины — промежуточной зоне, VIII—IX пластины — передним рогам, X пластина — зона околоцентрального канала.

Серое вещество мозга состоит из мультиполярных нейронов трех типов. Пер­вый тип нейронов является филогенетически более древним и характеризуется не­многочисленными длинными, прямыми и слабо ветвящимися дендритами (изоден-дритический тип). Второй тип нейронов имеет большое число сильно ветвящихся дендритов, которые переплетаются, образуя «клубки» (идиодендритический тип). Третий тип нейронов по степени развития дендритов занимает промежуточное положение между первым и вторым типами.

Белое веществоспинного мозга представляет собой совокупность про­дольно ориентированных преимущественно миелиновых волокон. Пучки нервных волокон, осуществляющие связь между различными отделами не­рвной системы, называются проводящими путями спинного мозга.

Нейроциты.Клетки, сходные по размерам, тонкому строению и функциональному значению, лежат в сером веществе группами, которые называются ядрами. Среди нейронов спинного мозга можно выделить следующие виды клеток: корешковые клетки, нейриты которых покидают спинной мозг в составе его передних корешков, внутренние клет­ки, отростки которых заканчиваются синапсами в пре­делах серого вещества спинного мозга, и пучковые клетки, аксоны которых проходят в белом веществе обособленными пучками волокон, несущими нервные импульсы от определенных ядер спинного мозга в его другие сегменты или в соответствующие отделы го­ловного мозга, образуя проводящие пути. Отдельные участки серого веще­ства спинного мозга значительно отличаются друг от друга по составу ней­ронов, нервных волокон и нейроглии.

№ 48 Сосуды микроциркуляторного русла. Морфо-функциональная характеристика. Артериолы. Особенности структурной организации и регуляции деятельности артериол.

Микроциркуляторное русло - системамелких сосудов, включающая артериолы, гемокапилляры, венулы, а также артериоловенулярные анастомозы. Этот функциональный комплекс кровеносных сосудов, окруженный лимфатическими капиллярами и лимфатическими сосудами, вместе с окружающей соединительной тканью обеспечивает регуляцию кро­венаполнения органов, транскапиллярный обмен и дренажно-депонирующую функцию. Чаще всего элементы микроциркуляторного рус­ла образуют густую систему анастомозов прекапиллярных, капиллярных и посткапиллярных сосудов, но могут быть и другие варианты с выделением какого-либо основного, предпочтительного канала. В каждом органе существуют специфические особенности конфигурации, диаметра и плотности расположения сосудов микроциркуляторного русла.

Сосуды микроциркуляторного русла пластичны при изменении кровотока. Они могут депонировать форменные элементы, изменять проницаемость для тканевой жидкости.

Артериолы- наиболее мелкие артериальные сосуды мышечного типа которые, с одной стороны, связаны с артериями, а с другой — постепенно переходят в капилляры. В артериолах со­храняются три оболочки, характерные для артерий вообще. Внутренняя оболочка этих сосудов состоит из эндотелиальных клеток с базальной мембраной, тонкого подэндотелиального слоя и тонкой внутренней эластической мембраны. Средняя оболоч­ка образована 1—2 слоями гладких мышечных клеток, имеющих спирале­видное направление.

В прекапиллярных артериолах(прекапиллярах) гладкие мышечные клетки располагаются поодиночке. Расстояние между ними уве­личивается в дистальных отделах, однако они обязательно присутствуют в месте отхождения прекапилляров от артериолы и в месте разделения прекапилляра на капилляры. В артериолах обнаруживаются перфорации в ба­зальной мембране эндотелия и внутренней эластической мембране, благо­даря которым осуществляется непосредственный тесный контакт эндотелиоцитов и гладких мышечных клеток. Такие контакты создают условия для передачи информации от эндотелия к гладким мышечным клеткам. В частности, при выбросе в кровь адреналина надпочечников эндо­телий синтезирует фактор, который вызывает сокращение гладких мышеч­ных клеток. Между мышечными клетками артериол обнаруживается неболь­шое количество эластических волокон. Наружная эластическая мембрана от­сутствует. Наружная оболочка представлена рыхлой волокнистой соеди­нительной тканью.

В функциональном отношении артериолы являются «кранами сосудистой системы»(Сеченов), которые регулируют приток крови к органам благодаря сокращению спирально направлен­ных гладких мышечных клеток, иннервируемых эфферентными нервны­ми волокнами. В месте отхождения гемокапилляра от прекапиллярных артериол имеется сужение, обусловленное циркулярно расположенны­ми гладкими мышечными клетками в устье капилляров, выполняющих роль прекапиллярных сфинктеров.

№ 49 Сосуды микроциркуляторного русла. Морфо-функциональная характеристика. Артериоло-венулярные анастомозы. Классификация, строение и функции различных типов артериоло-венулярных анастомозов.

Микроциркуляторное русло - системамелких сосудов, включающая артериолы, гемокапилляры, венулы, а также артериоловенулярные анастомозы. Этот функциональный комплекс кровеносных сосудов, окруженный лимфатическими капиллярами и лимфатическими сосудами, вместе с окружающей соединительной тканью обеспечивает регуляцию кро­венаполнения органов, транскапиллярный обмен и дренажно-депонирующую функцию. Чаще всего элементы микроциркуляторного рус­ла образуют густую систему анастомозов прекапиллярных, капиллярных и посткапиллярных сосудов, но могут быть и другие варианты с выделением какого-либо основного, предпочтительного канала. В каждом органе существуют специфические особенности конфигурации, диаметра и плотности расположения сосудов микроциркуляторного русла. Сосуды микроциркуляторного русла пластичны при изменении кровотока. Они могут депонировать форменные элементы, изменять проницаемость для тканевой жидкости.

Артериоловенулярные анастомозы (ABA) — это соединения сосудов, несущих артериальную кровь в вены в обход капиллярного русла. Они обна­ружены почти во всех органах. Объем кровотока в ABA во много раз больше, чем в капиллярах, скорость кровотока значительно увеличена.

Классификация: Различают две группы анастомозов:

1) истин­ные ABA (шунты), по которым сбрасывается чисто артериальная кровь,

2) атипичные ABA (полушунты), по которым течет смешанная кровь.

Первая группа истинных анастомозов (шунты) может иметь различную внешнюю форму — прямые короткие соустья, петли, ветвящи­еся соединения. По своему строению они подразделяются на две подгруп­пы:

а) простые ABA,

б) ABA, снабженные специальными сократительны­ми структурами.

В простых истинных анастомозах границы перехода одного сосуда в другой соответствуют участку, где заканчивается средняя оболочка артериолы. Регу­ляция кровотока осуществляется гладкомышечными клетками средней оболочки самой артериолы, без специальных дополнительных сократительных аппаратов.

Во второй подгруппе анастомозы могут иметь специальные сократи­тельные устройства в виде валиков в подэндотелиальном слое, образованные продольно расположенными гладкомышечными клетками. Сокраще­ние подушек, выступающих в просвет анастомоза, приводит к прекращению кро­вотока.

Вторая группа – атипичные анастомозы (полушунты) -соединения артериол и венул, по которым кровь протекает через короткий широкий капилляр. Поэтому сбрасываемая в венозное русло кровь является не полностью артериальной.

ABA богато иннервированы. ABA прини­мают участие в регуляции кровенаполнения органов, местного и общего давления крови, в мобилизации депонированной в венулах крови.

№ 43 Сердечно-сосудистая система. Общая морфо-функциональная характеристика. Классификация сосудов. Развитие, строение, взаимосвязь гемодинамических условий и строения сосудов. Принцип иннервации сосудов. Регенерация сосудов.

Сердечно-сосудистая система — совокупность органов (сердце, крове­носные и лимфатические сосуды), обеспечивающая распространение по организму крови и лимфы, содержащих питательные и биологически ак­тивные вещества, газы, продукты метаболизма.

Кровеносные сосуды представляют собой систему замкнутых трубок различ­ного диаметра, осуществляющих транспортную функцию, регуляцию кровоснаб­жения органов и обмен веществ между кровью и окружающими тканями.

Вкровеносной системе различают артерии, артериолы, гемокапилляры, венулы, вены и артериоло- венулярные анастомозы. Взаимосвязь между артериями и венами осуществля­ется системой сосудов микроциркуляторного русла.

По артериям кровь течет от сердца к органам. Как правило, эта кровь насыщена кислородом, за исключением легочной артерии, несущей веноз­ную кровь. По венам кровь" притекает к сердцу и содержит в отличие от крови легочных вен мало кислорода. Гемокапилляры соединяют артериаль­ное звено кровеносной системы с венозным, кроме так называемых чудес­ных сетей, в которых капилляры находятся между двумя од­ноименными сосудами (например, между артериями в клубочках почки).

Гемодинамические условия (кровяное давление, скорость кровотока), которые создаются в различных частях тела, обус­ловливают появление специфических особенностей строения стенки внутриорганных и внеорганных сосудов.

Сосуды (артерии, вены, лимфатические сосуды) имеют сходный план строения. За исключением капилляров и некоторых вен, все они содержат 3 оболочки:

Внутренняя оболочка: Эндотелий - слой плоских клеток (лежащих на базальной мембране), который обращён в сосудистое русло.

Подэндотелиальный слой состоит из рыхлой соединительной ткани. и гладкие миоциты. Специальные эластические структуры (волокна или мембраны).

Средняя оболочка: гладкие миоциты и
межклеточное вещество (протеогликаны, гликопротеины, эластические и коллагеновые волокна).

Наружная оболочка: рыхлая волокнистая соединительная ткань, содержатся эластические и коллагеновые волокна, а также адипоциты, пучки миоцитов. Сосуды сосудов (vasa vasorum), лимфатические капилляры и нервные стволы.

Строение стенка кровеносных капилляров:

Слой эндотелиальных клеток (на базальной мембране).

Слой перицитов - соединительнотканных клеток, находящихся в расщеплениях базальной мембраны.

Адвентициальный слой: адвентициальные клетки и межклеточное вещество.

По строению стенок артерии делятся на 3 типа:

Эластического, мышечно-эластического, мышечного типа.

Вены: волокнистого, мышечного типа.

Капилляры:соматического, фенестрированного, перфорированного типов.

Регенерация.Мелкие кровеносные сосуды обладают способностью к регенерации. Восстановление дефектов сосудистой стенки после ее повреждения начинается с регенерации и роста ее эндотелия. На месте нанесенного повреждения наблюдается многочисленное деление эндотелиальных клеток.

В регенерации сосудов после травмы принимают участие эндотелиоциты, адвентициальные клетки. Мышечные клетки поврежденного сосуда, как правило, восстанавли­ваются более медленно и неполно по сравнению с другими тканевыми эле­ментами сосуда. Восстановление их происходит частично путем деления миоцитов, а также в результате дифференцировки миофибробластов. Элас­тические элементы развиваются слабо. В случае полного перерыва среднего и крупного сосудов регенерации его стенки не наступает. Новообразование капилляров начинается с того, что цитоплаз­ма эндотелиальных клеток артериол и венул набухает, затем эндотелиальные клетки подвергаются делению.

Принцип иннервации сосудов: В средней и наружной оболочках всех крупных сосудов проходят нервные стволики. В крупных венах, с сильным развитием мышечных волокон (нижняя полая вена), образуются нервные волокна, а также залегают пластинчатые нервные окончания..

№ 44 Сердечно-сосудистая система. Общая морфо-функциональная характеристика. Классификация сосудов. Развитие, строение, взаимосвязь гемодинамических условий и строения сосудов. Структурные основы нейрогуморальной регуляции сосудов. Регенерация сосудов.

Сердечно-сосудистая система — совокупность органов (сердце, крове­носные и лимфатические сосуды), обеспечивающая распространение по организму крови и лимфы, содержащих питательные и биологически ак­тивные вещества, газы, продукты метаболизма.

Кровеносные сосуды представляют собой систему замкнутых трубок различ­ного диаметра, осуществляющих транспортную функцию, регуляцию кровоснаб­жения органов и обмен веществ между кровью и окружающими тканями.

Вкровеносной системе различают артерии, артериолы, гемокапилляры, венулы, вены и артериоло- венулярные анастомозы. Взаимосвязь между артериями и венами осуществля­ется системой сосудов микроциркуляторного русла.

По артериям кровь течет от сердца к органам. Как правило, эта кровь насыщена кислородом, за исключением легочной артерии, несущей веноз­ную кровь. По венам кровь" притекает к сердцу и содержит в отличие от крови легочных вен мало кислорода. Гемокапилляры соединяют артериаль­ное звено кровеносной системы с венозным, кроме так называемых чудес­ных сетей, в которых капилляры находятся между двумя од­ноименными сосудами (например, между артериями в клубочках почки).

Гемодинамические условия (кровяное давление, скорость кровотока), которые создаются в различных частях тела, обус­ловливают появление специфических особенностей строения стенки внутриорганных и внеорганных сосудов.

Сосуды (артерии, вены, лимфатические сосуды) имеют сходный план строения. За исключением капилляров и некоторых вен, все они содержат 3 оболочки:

Внутренняя оболочка: Эндотелий - слой плоских клеток (лежащих на базальной мембране), который обращён в сосудистое русло.

Подэндотелиальный слой состоит из рыхлой соединительной ткани. и гладкие миоциты. Специальные эластические структуры (волокна или мембраны).

Средняя оболочка: гладкие миоциты и
межклеточное вещество (протеогликаны, гликопротеины, эластические и коллагеновые волокна).

Наружная оболочка: рыхлая волокнистая соединительная ткань, содержатся эластические и коллагеновые волокна, а также адипоциты, пучки миоцитов. Сосуды сосудов (vasa vasorum), лимфатические капилляры и нервные стволы.

Строение стенка кровеносных капилляров:

Слой эндотелиальных клеток (на базальной мембране).

Слой перицитов - соединительнотканных клеток, находящихся в расщеплениях базальной мембраны.

Адвентициальный слой: адвентициальные клетки и межклеточное вещество.

По строению стенок артерии делятся на 3 типа:

Эластического, мышечно-эластического, мышечного типа.

Вены: волокнистого, мышечного типа.

Капилляры:соматического, фенестрированного, перфорированного типов.

Регенерация.Мелкие кровеносные сосуды обладают способностью к регенерации. Восстановление дефектов сосудистой стенки после ее повреждения начинается с регенерации и роста ее эндотелия. На месте нанесенного повреждения наблюдается многочисленное деление эндотелиальных клеток.

В регенерации сосудов после травмы принимают участие эндотелиоциты, адвентициальные клетки. Мышечные клетки поврежденного сосуда, как правило, восстанавли­ваются более медленно и неполно по сравнению с другими тканевыми эле­ментами сосуда. Восстановление их происходит частично путем деления миоцитов, а также в результате дифференцировки миофибробластов. Элас­тические элементы развиваются слабо. В случае полного перерыва среднего и крупного сосудов регенерации его стенки не наступает. Новообразование капилляров начинается с того, что цитоплаз­ма эндотелиальных клеток артериол и венул набухает, затем эндотелиальные клетки подвергаются делению.

Нейрогуморальная регуляция:

3 основных механизма регуляции деятельности кровеносных сосудов:

нейромышечный – сбор информации от капилляров, артерий, вен и передача в спинальные сосудодвигательные центры. Центры обеспечивают приток крови в магистральные артерии.

Сокращение: ацетилхолин + ВИП, гистамин, вещество Р (модулятор боли).

Расслабление: норадреналин + нейропептид, серотонин, дофамин.

Нейропаракринный - регулирует деятельность сосудов посредством эндокринных клеток (хромаффиноцит, тучная клетка), синтезирующих пептиды (вазопрессин, ВИП, вещество Р, гистамин, серотонин).

Эндотелиозависимый – решающее значение имеет эндотелий, синтезирующие факторы, предотвращающие коагуляцию крови (антитромбин, протеин С), активаторы системы свертывания крови (тромбопластин). Вазоактивные вещества: простогландины, пурины, брадикинин, серотонин, гистамин.

№ 45 Сердце. Общая морфо-функциональная характеристика. Источники развития. Строение оболочек стенки сердца в предсердиях и желудочках. Васкуляризация. Иннервация. Возрастные особенности.

Сердце – основной орган, приводящий в движение кровь.

Развитие: первая закладка сердца появляется в начале 3-й недели развития у эмбриона в виде скопления мезенхимных клеток. Позднее эти скопления превращаются в две удлиненные трубочки, впадающие вместе с прилегающими висцеральными листками мезодермы в целомическую полость. Мехенхимные трубочки сливаются – образуется эндокард. Та область висцеральных листков мезодермы, которая прилежит к этим трубочкам, называется миоэпикардиальными пластинками. Из них дифференцируются 2 части – внутренняя, прилежит к мезенхимной трубке – миокард: наружная - эпикард.

В стенке сердца различают 3 оболочки: внутреннюю – эндокард, среднюю (мышечную) – миокард , наружную – эпикард.

Эндокард напоминает по строению стенку сосуда. В нём выделяют 4 слоя:

эндотелийна базальной мембране;

подэндотелиальный слой из рыхлой соединительной ткани;

мышечно-эластический слой, включающий гладкие миоциты и эластические волокна;

наружный соединительнотканный слой .Сосуды имеются лишь в последнем из этих слоёв. Остальные слои питаются путём диффузии веществ непосредственно из крови, проходящей через камеры сердца.

В миокардепредсердий различают 2 мышечных слоя: внутренний продольный и наружный циркулярный.

В миокарде желудочков - 3 слоя: относительно тонкие внутренний и наружный - продольные, прикрепляющиеся к фиброзным кольцам, окружающим предсердно-желудочковые отверстия; и мощный срединный слой с циркулярной ориентацией.

Эпикард включает 3 слоя:

а) мезотелий- однослойный плоский эпителий, развивающийся из мезодермы

б) тонкую соединительнотканную пластинку, содержащую несколько чередующихся слоёв коллагеновых и эластических волокон и кровеносные сосуды,

в) слой жировой ткани.

Васкуляризация.Венечные артерии имеют плотный элас­тический каркас, в котором четко выделяются внутренняя и наружная эла­стические мембраны. Гладкие мышечные клетки в артериях обнаруживают­ся в виде продольных пучков во внутренней и наружной оболочках. В осно­вании клапанов сердца кровеносные сосуды у места прикрепления створок разветвляются на капилляры. Кровь из капилляров собирается в коронар­ные вены, впадающие в правое предсердие или венозный синус. Проводящая систе­ма обильно снабжена кровеносными сосудами. Лимфа­тические сосуды в эпикарде сопровождают кровеносные. В миокарде и эн­докарде они проходят самостоятельно и образуют густые сети. Лимфатичес­кие капилляры обнаружены также в атриовентрикулярных и аортальных клапанах. Из капилляров лимфа, оттекающая от сердца, направляется в парааортальные и парабронхиальные лимфатические узлы. В эпикарде и перикарде находятся сплетения сосудов микроциркуляторного русла.

Иннервация: В стенке сердца обнаруживается несколько нервных спле­тений (в основном из безмиелиновых волокон адренергической и холинергической природы) и ганглиев. Наибольшая плотность расположения не­рвных сплетений отмечается в стенке правого предсердия и синусно-предсердного узла проводящей системы. Рецепторные окончания в стенке сердца (свободные и инкапсулирован­ные) образованы нейронами ганглиев блуждающих нервов и нейронами спинномозговых узлов.






Сейчас читают про: