Остановимся на двух особенностях механизма перемещения дислокаций

1. Дислокации могут весьма легко (при малой нагрузке ) передвигаться вдоль плоскости скольжения посредством «эстафетного» перемещения экстраплоскости. На рис. 1.2.8 показан начальный этап такого движения (двумерный рисунок в плоскости, перпендикулярной линии краевой дислокации).

Рис. 1.2.8. Начальный этап эстафетного перемещения краевой дислокации (^): А-А – плоскость скольжения, 1-1 экстраплоскость (исходная позиция)

Под действием усилия атомы экстраплоскости (1–1) отрывают от плоскости (2–3) атомы (2–2), расположенные выше плоскости скольжения. В результате эти атомы образуют новую экстраплоскость (2¢-2¢); атомы «старой» экстраплоскости (1–1) занимают освободившиеся места, достраивая плоскость (1¢-1¢-3). Этот акт означает исчезновение «старой» дислокации, связанной с экстраплоскостью (1–1), и возникновение «новой», связанной с экстраплоскостью (2¢-2¢), или, другими словами, передачу «эстафетной палочки» - дислокации на одно межплоскостное расстояние. Такое эстафетное перемещение дислокации будет продолжаться до тех пор, пока она не дойдет до края кристалла, что будет означать сдвиг его верхней части на одно межплоскостное расстояние (т.е. пластическую деформацию).

Этот механизм не требует больших усилий, т.к. состоит из последовательных микросмещений, затрагивающих лишь ограниченное число атомов, окружающих экстраплоскость.

2. Очевидно, однако, что такая легкость скольжения дислокаций будет наблюдаться лишь в том случае, когда на их пути отсутствуют какие – либо препятствия. Такими препятствиями являются любые дефекты решетки (особенно линейные и поверхностные!), а также частицы других фаз, если они присутствуют в материале. Эти препятствия создают искажения решетки, преодоление которых требует дополнительных внешних усилий, поэтому могут заблокировать движение дислокаций, т.е. сделать их неподвижными.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: