Октябрьская революция 1917 открыла огромные возможности для развития электротехники. Для успешного хозяйственного строительства Советской республики потребовалось решить множество научных задач, связанных с электроэнергетикой и электротехникой. Вопросы строительства электрических станций и их эксплуатации стояли в центре внимания советских энергетиков (Р. Э. Классон, Г. О. Графтио, И. Г. Александров, Г. М. Кржижановский, А. В. Винтер и др.). Успешно решались задачи автоматизации электрических станций, подстанций и сетей. Изучение техники высоких напряжений проводилось на базе высоковольтной лаборатории Петроградского политехнического института. Здесь в начале 20-х гг. А. А. Горевым, А. М. Залесским, А. А. Смуровым и др. был решен ряд узловых проблем, связанных с сооружением по плану ГОЭЛРО первых ЛЭП высокого напряжения, в частности с производством изоляторов для этих линий. В последующие годы эта лаборатория выросла в крупный научно-исследовательский и учебный центр, в котором были проведены фундаментальные исследования в области электротехники. Разработанные здесь высоковольтные конденсаторы позволили создать мощные испытательные установки на высокое напряжение, в том числе т. н. колебательный контур Горева. В 1920—30-х гг. исследования по технике высоких напряжений развернулись во многих научных центрах страны. Такие работы были начаты Б. И. Угримовым в Москве, В. М. Хрущевым в Харькове. В МЭИ и ВЭИ исследования в области высоких напряжений (испытание и конструирование изоляторов, разрядников, защита энергосистем от перенапряжений и т. п.) возглавил Л. И. Сиротинский. В Ленинградском электротехническом институте (ЛЭГИ) эта область электротехники развивалась под руководством А. А. Смурова, предложившего теорию ионизационного пробоя диэлектриков. Всесторонние исследования электрической прочности и других свойств диэлектриков, а также работы по теории пробоя были выполнены в 30-х гг. в Физико-техническом институте АН СССР (ФТИ АН СССР), в Электрофизическом институте (А. А. Чернышев и др.) и в Физическом институте АН СССР. Теоретическое решение задачи о тепловом пробое твёрдого диэлектрика, проведённое В. А. Фоком, внесло ясность в представление о физическом процессе пробоя и позволило найти подход к выбору диэлектриков. Физические свойства материалов с высокой диэлектрической проницаемостью и низкими диэлектрическими потерями исследованы Б. М. Вулом, Г. И. Сканави,
Н. П. Богородицким и др. К. А. Андриановым выполнены работы по созданию широкого класса электроизоляционных материалов на основе кремнийорганических полимеров.
Многочисленные труды советских исследователей посвящены проблемам рационального построения и надёжности эксплуатации электрических систем и сетей, вопросам передачи электроэнергии на большие расстояния. Теоретические основы анализа переходных процессов в электрических системах и в ЛЭП сформулированы в трудах Горева. Результаты теоретических исследований статической и динамической устойчивости сложных электрических систем обобщены в монографии С. А. Лебедева, П. С. Жданова (1933), теория и методы расчёта токов короткого замыкания, а также теория переходных процессов рассмотрены Н. Н. Щедриным, С. А. Ульяновым и др. Первые обобщающие теоретические исследования в области релейной защиты проведены В. И. Ивановым, теория релейной защиты и автоматики электрических систем разработана А. М. Федосеевым и
И. И. Соловьевым, теория режимов сложных электрических систем — И. М. Марковичем. Для анализа расчёта стационарных и аварийных режимов работы крупных систем методами моделирования были созданы различные статические расчётные столы-модели (С. А. Лебедев, И. С. Брук, Жданов, Д. И. Азарьев, Федосеев) и электродинамические модели (М. П. Костенко, В. А. Веников и др.). Даны оригинальные решения многих вопросов теории проектирования, строительства и эксплуатации электрических сетей и ЛЭП (Горев, А. А. Глазунов, Хрущев, М. Д. Каменский и др.).
Работы советских учёных позволили решить многие важные задачи повышения мощности и дальности ЛЭП, а также повышения устойчивости электрических систем, объединяющих электростанции различных типов. Они обеспечили, например, возможность построения ЛЭП Куйбышев — Москва (мощность более 1 Гвт, протяжённость 900 км, переменное напряжение 400 кв). В 1967 начаты исследования на опытной ЛЭП переменного тока на 750 кв (Конаковская ГРЭС — Москва, протяжённостью 90 км), в 1976 введены в эксплуатацию ЛЭП на 750 кв Ленинград — Москва и Донбасс — Мукачево. Разрабатывается (1977) проект сооружения ЛЭП напряжением 1150 кв. Изучение вопросов передачи электроэнергии постоянным током высокого напряжения проводилось в ЭНИН, ВЭИ, НИИ постоянного тока (НИИПТ), где разрабатывалась теория и испытывались различные схемы выпрямления и инвертирования, создавались электронно-ионные преобразовательные устройства. На основе разработок ФТИ АН СССР были созданы полупроводниковые (тиристорные) преобразователи тока, установленные на уникальной ЛЭП постоянного тока Волжская ГЭС им. 22-го съезда КПСС — Донбасс мощностью 750 Мвт, напряжением 800 кв, протяжённостью 470 км (пущена в 1962). Ведутся опытные работы с использованием рабочего напряжения 1500 кв. По развитию техники передачи электрической энергии СССР занимает передовые позиции среди промышленно развитых стран.
Видное место в исследованиях сложных электроэнергетических систем, а также в вопросах передачи электроэнергии постоянным и переменным током принадлежит работам Л. Р. Неймана.
В СССР (во многих случаях впервые) внедрялись методы и средства, позволившие существенно повысить пропускную способность протяжённых ЛЭП и обеспечить устойчивость работы объединённых электроэнергетических систем. К важнейшим мероприятиям относятся: деление всей трассы ЛЭП на участки с подпорными синхронными компенсаторами и переключательными пунктами, применение т. н. расщепленных проводов в каждой фазе, применение компенсационных устройств, изготовление генераторов и трансформаторов со сниженным индуктивным сопротивлением, использование автоматического регулирования с форсировкой возбуждения генераторов, применение быстродействующей релейной защиты и отключающей аппаратуры. Большие трудности были преодолены при решении проблемы защиты ЛЭП на 400—500 кв от перенапряжений и снижения потерь энергии на электрическую корону (В. И. Попков). С этой целью использована идея В. Ф. Миткевича об увеличении «электрического» диаметра проводов путём их расщепления.
В тесной связи с решением проблем строительства электрических систем, передачи электроэнергии на большие расстояния и защиты от перенапряжений шла разработка вопросов высоковольтного аппаратостроения; изучение физических процессов и методов разрыва и гашения дуги, термических и электродинамических явлений в аппаратах; изыскание дугогасящих материалов; конструирование (и испытания) масляных, воздушных и других выключателей, а также разъединителей, трансформаторов тока, реакторов, разрядников и других аппаратов для установок высокого напряжения (А. Я. Буйлов, Г. В. Буткевич, Горев, Л. И. Иванов и др.). Эти исследования позволили электропромышленности СССР освоить выпуск всех видов высоковольтных коммутационных аппаратов. Так, ещё в 1959 в ВЭИ был разработан выключатель на напряжение 400 кв с гашением дуги сжатым воздухом при мощности отключения 10 Гва. Такие выключатели были установлены на ЛЭП Куйбышев — Москва. Созданные высоковольтные выключатели обеспечивают возможность вести строительство районных электрических систем и распределит. сетей на напряжения от 3 до 750 кв с мощностью отключения от 50 до 40 000 Мва. Изучается возможность создания отключающих аппаратов с бездуговой коммутацией при помощи управляемых полупроводниковых вентилей.
Задачи научных исследований по вопросам электрических машин и трансформаторов выдвигались потребностями электромашиностроения, которое по ряду важных направлений заняло ведущее положение в мировой технике (гидрогенераторы большой мощности, специальные типы электрических машин, трансформаторов и т. д.). В ходе научных исследований были проведены фундаментальные работы по общим вопросам теории, методам испытания, расчёта и конструирования электрических машин и трансформаторов, по проблемам коммутации коллекторных машин, переходных процессов в машинах переменного и постоянного тока, устойчивости параллельной работы синхронных машин и др. (Р. А. Лютер, А. Е. Алексеев, В. С. Кулебакин, Г. Н. Петров, В. А. Толвинский, В. Т. Касьянов, А. Н. Ларионов, И. С. Брук, П. П. Копняев, Ф. И. Холуянов, А. Г. Иосифян, Л. М. Пиотровский и др.). К. И. Шенфер внёс крупный вклад в теорию электрических машин (труды по коллекторным двигателям переменного тока, машинам постоянного тока, асинхронным машинам и др.). Достижения теории электрических машин развиты в капитальных работах Костенко и других авторов. В работах В. К. Попова и С. А. Ринкевича были заложены основы теории электропривода.
На основе проведённых исследований были созданы высокоэффективные электротехнические устройства. Так, была разработана серия синхронных двигателей мощностью до 10 Мвт с относительно малым расходом обмоточной меди, электротехнической стали и изоляционных материалов. Эти машины находятся на уровне наивысших мировых достижений. Были также построены уникальные синхронные компенсаторы мощностью 75 Мва для ЛЭП Куйбышев — Москва и электропривод главного вала атомного ледокола «Ленин» с крупнейшим в мире двухъякорным электродвигателем постоянного тока мощностью 14 400 квт (19 600 л. с.) на 1300 в. Современные электромашины выпускаются мощностью от долей вт (микромашины) до сотен Мвт (турбогенераторы 500, 800, 1200 Мвт). Развилось производство специализированных электромашин.
Успехи электромашиностроения позволили внедрить в промышленность и в другие отрасли народного хозяйства автоматизированный электропривод, дальнейшее развитие которого связано с достижениями в создании силовых полупроводниковых приборов, в частности тиристорных преобразователей постоянного и переменного тока. Начиная с 60-х гг. электрификация всех отраслей промышленности проводится с применением регулируемого электропривода — основы комплексной автоматизации рабочих механизмов и технологических процессов.
На основе достижений электротехники планомерно развивается электрификация железнодорожного транспорта. В конце 50-х гг. СССР занял 1-е место в мире по общей протяжённости электрифицированных железных дорог. В середине 70-х гг. протяжённость дорог, электрифицированных на переменном токе, превысила протяжённость аналогичных дорог во всех зарубежных странах вместе взятых. Созданы современные электровозы и электропоезда, в том числе самый мощный в мире серийный электровоз (8640 л. с.) переменного тока с полупроводниковыми преобразователями. Освоено производство электровозов, работающих как на постоянном, так и на переменном токе.
Быстро развивается электротехнология. В электрометаллургии работают дуговые печи ёмкостью 100 и 200 т. Применяются высокочастотные индукционные электропечи, а также электропечи с кипящим жидкометаллическим теплоносителем; ведутся исследования плазменных электротермических установок. В машиностроении получили распространение методы индукционного и контактного нагрева при обработке давлением и термическая обработка деталей. Большой прогресс достигнут в разработке новых способов электросварки. Успешно используются ультразвуковые и лучевые методы обработки металлов. Расширяется применение плазменной струи для резки магния, алюминия, тугоплавких металлов и т. п., а также сварки электронным лучом и лучом лазера.
Достижения электротехники используются во всех сферах человеческой деятельности: в промышленности, науке, медицине, быту и т. д. Прогресс науки и техники открывает перед электротехникой новые возможности; например, успехи физики низких температур позволили в 60—70-х гг. создать электротехнические устройства с гиперпроводниками и сверхпроводниками, в том числе электрические машины и электромагниты со сверхпроводящими обмотками. Применение средств вычислит. техники оказало значительное влияние на методы теоретической электротехники; в частности, с помощью ЭВМ синтезированы сложные электромагнитные поля с заданными свойствами. Космические исследования, а также изучение и освоение труднодоступных и удалённых районов страны стимулировали работы по созданию малогабаритных и надёжных автономных источников электроэнергии, нашедших применение на космических летательных аппаратах, автоматических метеорологических станциях и др.
Советская электротехническая школа занимает видное место в мировой электротехнике. Во многих городах (Киеве, Львове, Новосибирске, Саранске и др.) выросли новые научные центры, сложились многочисленные коллективы специалистов. Основные научные исследования по вопросам электротехники проводятся во Всесоюзном электротехническом институте им. В. И. Ленина (ВЭИ, Москва), Государственном научно-исследовательском энергетическом институте им. Г. М. Кржижановского (ЭНИН), Всесоюзном НИИ электромашиностроения (Ленинград), Московском энергетическом институте (МЭИ), Ленинградском электротехническом институте (ЛЭТИ), Всесоюзном НИИ электромеханики (ВНИИЭМ, Москва), Всесоюзном НИИ электропривода (ВНИИ Электропривод, Москва), Всесоюзном НИИ источников тока (ВНИИТ, Москва), НИИ постоянного тока (НИИПТ, Ленинград), на заводах «Электросила», «Динамо» и мн. др.
По многим вопросам электротехники советские учёные ведут совместные работы с научными организациями стран — членов СЭВ; принимают активное участие в деятельности международных научных организаций — Международной электротехнической комиссии (МЭК), Мирового энергетического конгресса (МИРЭК) и др.
Периодические издания: «Электротехника» (с 1930), «Электротехническая промышленность» (с 1947), «Электричество» (с 1880), «Промышленная энергетика» (с 1944), «Электрические станции» (с 1930), «Известия АН СССР. Энергетика и транспорт» (с 1963), «Известия высших учебных заведений. Электромеханика» (с 1958) и др.
См. также Электротехника, Электроэнергетика.
Электроника, радиотехника и электросвязь
Среди русских учёных и изобретателей, стоявших у истоков электросвязи в России и внёсших значит. вклад в отечеств. и мировую науку, видное место занимают основоположник электромагнитной телеграфии П. Л. Шиллинг, который в 1832 создал первый практически пригодный комплекс устройств для телеграфной связи, Б. С. Якоби, разработавший весьма удачные конструкции телеграфных аппаратов (в 1839 — пишущий, в 1850 — буквопечатающий), и пионер отечественной телефонии П. М. Голубицкий, предложивший в 1881—87 образцы надёжной и высокочувствительной телефонной аппаратуры, много сделавший для внедрения телефонной связи в промышленности и на транспорте (главным образом железнодорожном).
Развитие проводной электросвязи в России в середине 19 в. стимулировалось преимущественно военно-политическими событиями (особенно Крымской войной 1853—56), побудившими царское правительство форсировать строительство телеграфных линий государственного значения, таких, как Петербург — Москва (1852), Петербург — Варшава (1854; позже продлена до прусской границы, соединила телеграфные сети России и стран Западной Европы), Петербург — Киев (1855). В 1882 в России были введены в эксплуатацию первые линии городской телефонной связи (несколько раньше, в частности во время Русскo-турецкой войны 1877—78, — в русской армии).
Последующее развитие проводной электросвязи характеризовалось техническим совершенствованием аппаратуры связи (В. Б. Якоби, Р. Р. Вреден, Е. В. Колбасьев, А. А. Столповский и мн. др.), разработкой систем многоканальной связи (З. Я. Слонимский, Г. И. Морозов, Г. Г. Игнатьев, Е. И. Гвоздев), повышением степени автоматизации связи (К. А. Мосницкий, М. Ф. Фрейденберг, И. А. Тимченко, С. М. Бердичевский-Апостолов). В 1871 была построена телеграфная линия Москва — Владивосток (протяжённостью около 12 тыс. км); важным событием в истории становления и развития телефонной связи в России явилось строительство в 1898 самой длинной в Европе магистральной линии связи Петербург — Москва.
7 мая 1895 на заседании Русского физико-химического общества А. С. Попов продемонстрировал действие созданной им аппаратуры для беспроводной передачи сигналов на расстояние. Это означало рождение радио (радиосвязи, радиотехники). Летом 1895 А. С. Попов применил свой приёмник радиосигналов (снабдив его некоторыми дополнит. узлами) для регистрации электромагнитного излучения гроз, что положило начало радиометеорологии. В 1899 была обнаружена (П. Н. Рыбкин, Д. С. Троицкий) способность когерера детектировать принимаемые им радиосигналы (детекторный эффект). На основе этого эффекта удалось значительно увеличить дальность радиотелеграфирования. К 1903 относятся первые опыты по радиотелефонированию при помощи искрового передатчика (С. Я. Лифшиц). Во время Русскo-японской войны 1904—05 на кораблях русского флота использовались искровые радиостанции производства Кронштадтских мастерских (основаны в 1900). В 1910 мастерские были переведены в Петербург и преобразованы в Радиотелеграфное депо морского ведомства, а в 1915 — в радиотелеграфный завод — первое отечественное радиотехническое предприятие. С 1909 Почтовое ведомство начало строительство гражданских искровых радиостанций в городах центральной России и береговых радиостанций, предназначавшихся для связи с кораблями. Начались исследования (С. М. Айзенштейн, 1906) по практическому использованию незатухающих колебаний, полученных посредством дуговых генераторов, а затем электрических машин ВЧ (В. П. Вологдин, 1912, М. В. Шулейкин, 1913). В 1910 было создано первое научно-исследовательское учреждение — «Поверочное отделение» Кронштадтских радиотелеграфных мастерских (позже преобразованное в лабораторию при Радиотелеграфном депо морского ведомства), руководителями которого в разное время являлись А. А. Петровский, Л. Д. Исаков, Шулейкин. Под рук. И. И. Ренгартена незадолго до начала 1-й мировой войны 1914—18 развернулись исследовательской работы по радиопеленгации. В начале 20 в. в результате успехов электронной теории и на основе достижений вакуумной техники и технологии электрических ламп накаливания началась разработка электронных приборов. Использование электронных приборов для генерирования, усиления, преобразования электромагнитных колебаний (очень высокой, по тому времени, частоты — до 107 гц) и формирования кратковременных сигналов различной формы коренным образом изменило характер дальнейшего развития радиотехники и электросвязи. В 1910—17 в России (в отдельных лабораториях) были созданы (В. И. Коваленков, Н. Д. Папалекси, В. И. Волынкин, А. А. Чернышев, М. А. Бонч-Бруевич) первые отечественные электронные приборы.
С победой Октябрьской революции 1917 начался новый этап развития отечеств. радиотехники и электронной промышленности. 19 июля 1918 СНК РСФСР декретом о централизации радиотехнического дела заложил политические и организационные основы развития советской радиотехники. Всё радиотехническое хозяйство страны передавалось в ведение Народного комиссариата почт и телеграфов. В. И. Ленин видел в радио могучее средство массовой информации — «газету без бумаги и “без расстояний”...» (Полн. собр. соч., 5 изд., т. 51, с. 130), предсказывал, что радио «...будет великим делом» (там же). По его указанию началось строительство нескольких крупных радиостанций, был осуществлен ряд организационных мероприятий, направленных на ускорение развития радиосвязи и радиовещания. В декабре 1918 Ленин подписал Положение «О Нижегородской радиолаборатории» (НРЛ) — первом советском научно-исследовательском центре (одним из его руководителей был Бонч-Бруевич), с которым связаны многие достижения в области радиотехнических знаний, в создании электронных приёмно-усилительных и генераторных ламп (в частности, первых в мире мощных — 25 и 40 квт — ламп с водяным охлаждением), радиоприборов, в организации радиовещания. В 1920 в Москве (на Шаболовке) было завершено строительство радиостанции на дуговых генераторах мощностью 100 квт, для которой по проекту В. Г. Шухова была сооружена металлическая башня, ставшая эмблемой советского радиовещания. В 20-х гг. были построены ещё несколько радиостанций на дуговых генераторах или электрических машинах ВЧ конструкции Вологдина мощностью от 50 до 100 квт: в Люберцах (под Москвой) начал функционировать выделенный пункт для приёма радиотелеграфных сообщений (1923). Другой распространённой формой вещания (особенно в городах) стало проводное вещание. Развитию радиовещания и размаху радиолюбительского движения способствовало постановление СНК (июль 1924), разрешавшее создание «частных приёмных станций».
Плодотворную роль в реализации первых научных достижений советской радиотехники сыграли Российское общество радиоинженеров (1918) и Радиоассоциация, возглавленные видными учёными (Шулейкин, В. К. Лебединский, Петровский) и объединившие научные силы страны для решения многих теоретических и практических вопросов развития радио. Среди первых научно-исследовательских центров Радиолаборатория военного ведомства (1918, Москва; в 1924 была преобразована в Научно-испытательный институт связи Красной Армии) и Центральная радиолаборатория (1923, Петроград); значит. вклад в развитие радиовещания внесла Казанская база радиоформирований (1918), создавшая экономичные образцы радиопередающей и приёмно-усилительной аппаратуры.
В 1922—40 осуществлялось дальнейшее расширение исследований в области электроники и организации производства электронных приборов (приёмно-усилительных и генераторных ламп, газоразрядных выпрямителей и преобразователей, электроннолучевых трубок, рентгеновских приборов и т. д.). В 1922 постановлением ВСНХ в Петрограде был создан электровакуумный завод (руководители М. М. Богословский и С. А. Векшинский); в 1928 завод слился с электроламповым заводом «Светлана». В научно-исследовательской лаборатории этого завода, организованной Векшинским, были проведены серьёзные исследования в области физики и технологии электронных приборов (по эмиссионным свойствам катодов, газовыделению металлов и стекла, вакуумной технике и т. д.). Лаборатория Векшинского после присоединения к ней других лабораторий выросла в начале 30-х гг. в крупную научно-исследовательскую организацию, получившую в 1934 название Отраслевая вакуумная лаборатория (ОВЛ). До 1937 ОВЛ руководил Векшинский, до 1941 — С. А. Зусмановский. В ОВЛ, ставшей по существу основным научным центром советской электроники, работали многие крупные специалисты, возглавившие исследования по основным направлениям электронной техники: Ю. Д. Волдырь, В. С. Лукошков, С. М. Мошкович, С. А. Оболенский, Е. Л. Подгурский, А. А. Шапошников и мн. др. В 1928—30 на Московском электрозаводе был организован отдел электронных ламп. Результаты исследований свойств диэлектриков и тонких плёнок, выполненных в 30-х гг. (А. Ф. Иоффе, А. Ф. Вальтер, П. П. Кобеко, Г. И. Сканави и др.) в Физико-техническом институте АН СССР, послужили научной основой для организации производства пассивных электронных приборов (конденсаторов, резисторов и т. п.). Создание и развитие этого направления электроники связано с именами Н. П. Богородицкого, Е. А. Гайлиша, К. И. Мартюшова и др.
В связи с быстрым развитием радиовещания важной задачей стало создание парка радиоприёмников. В середине 20-х гг. приём радиосигналов осуществлялся в основном с помощью простых детекторных радиоприёмников и регенеративных приёмников на электронных лампах (главным образом с питанием от аккумуляторных батарей). На основе способности некоторых кристаллических полупроводников усиливать и генерировать электрические колебания в 1922 были разработаны (О. В. Лосев) полупроводниковый регенеративный, а затем и гетеродинный приёмник (кристадин). В начале 30-х гг. созданы громкоговорящие радиоприёмные устройства с питанием от сети переменного тока, в 1936—41 — супергетеродинные радиоприёмники.
Для решения научно-технических задач строительства мощных радиопередающих станций в конце 20-х гг. было организовано Бюро мощного радиостроения, преобразованное в 1930 в Отраслевую радиолабораторию передающих устройств. В ней сотрудничали многие ведущие радиоспециалисты (А. Л. Минц, З. И. Модель, И. Х. Невяжский, М. С. Нейман) Н. И. Оганов и др.). К этому периоду относится создание в Москве радиостанции ВЦСПС (1929) мощностью 100 квт и однотипных с ней радиостанций для Ленинграда и Новосибирска (1932). В 1933 вступила в строй самая, по тому времени, мощная в мире 500-киловаттная радиостанция им. Коминтерна, передатчик которой был построен по т. н. блочному принципу (содержал в оконечной ступени нескольких однотипных блоков, нагруженных на общую антенну). Оригинальная «система сложения мощностей в эфире» на коротких волнах была предложена Невяжским и реализована им в радиостанции РВ-96 мощностью 120 квт. К концу 30-х гг. насчитывалось 77 радиовещат. станций общей мощностью свыше 2 Мвт.
Своеобразное направление в технике мощного радиостроения составила разработка разборных генераторных ламп (Минц, Оганов и др.). В связи с интенсивным освоением диапазона СВЧ, в СССР были созданы первые генераторные магнетронные приборы — разрезной магнетрон (А. А. Слуцкий и Д. С. Штейнберг, 1926), многорезонаторный магнетрон (Н. Ф. Алексеев и Д. Е. Маляров под руководством Бонч-Бруевича, 1939). Заметные успехи были достигнуты в разработке генераторных и приёмно-усилительных триодов СВЧ (Зусмановский, Н. Д. Девятков и др.).
За годы довоен. пятилеток были достигнуты значит. успехи в области электросвязи. Начали функционировать первые коротковолновые линии радиосвязи — внутренние (например, Москва — Ташкент) и международные (Москва — Нью-Йорк, Москва — Париж). Была реконструирована и преобразована в крупный передающий радиоцентр Октябрьская радиостанция в Москве; в Бутово (под Москвой) создан приёмный радиоцентр. оборудованный с учётом новейших достижений в области радиотехники. В 1932—34 были введены в действие первые линии радиосвязи на метровых волнах (Москва — Ногинск, Москва — Кашира), внедрена УKB связь на ВМФ. К концу 30-х гг. была создана система факсимильной (фототелеграфной) связи между рядом городов страны, а также между Москвой и Берлином. В 1935 была разработана Генеральная схема развития связи СССР, согласно которой намечалось строительство 14 узлов связи, соединённых между собой и с Москвой проводными линиями и радиолиниями; предполагалась унификация аппаратуры телефонной, телеграфной, факсимильной связи и радиовещания. Большая часть намеченной программы была осуществлена в предвоенные годы (в частности, разработана и внедрена в 1941 12-канальная система В-12 с частотным разделением каналов для воздушных линий связи), остальная — после Великой Отечественной войны 1941—1945 с учётом достижений науки и техники.
В конце 20-х гг. в СССР началось развитие телевидения. С 1931 (в Москве, а вскоре и в других городах) проводились регулярные телевизионные передачи на средних волнах по системе малокадрового механического телевидения. С середины 30-х гг. механические системы постепенно вытеснялись электронными, разработка которых была начата в России ещё в 1907 (Б. Л. Розинг) и плодотворно продолжена советскими учёными. Так, в 1931 был изобретён иконоскоп (С. И. Катаев), в 1933 — супериконоскоп (П. В. Тимофеев, П. В. Шмаков), в том же году разработаны высокочувствительная трубка умножительного типа (Л. А. Кубецкий), трубка с развёрткой медленными электронами (В. И. Кузнецов), в 1938 — трубка с двухсторонней мозаичной мишенью (Г. В. Брауде). Три последние легли в основу современного суперортикона. В начале 40-х гг. работали телевизионные центры в Москве, Ленинграде и Киеве. Был налажен выпуск телевизионных приёмников (ТК-1, 17ТН1, 17ТНЗ).
К 1938 была создана крупная научно-исследовательская и промышленная база по производству радиотехнической аппаратуры. Развитие электронной промышленности и радиопромышленности в значительной мере способствовало техническому прогрессу во всех областях народного хозяйства, науки и техники, укреплению обороноспособности государства. В 30-х гг. окончательно сформировалась и получила мировое признание советская школа радиотехники и радиофизики; была подготовлена научно-техническая база для последующего развития электросвязи, телевидения, радиолокации, радионавигации и других областей науки и техники.
К середине 30-х гг. относится зарождение в СССР радиолокации. По инициативе М. М. Лобанова и П. К. Ощепкова в 1933—35 развернулись исследования по использованию для радиолокации методов непрерывного излучения (Ю. К. Коровин, Б. К. Шембель и др.), в 1937 — импульсного метода (Д. А. Рожанский, Ю. Б. Кобзарев, В. В. Цимбалин, П. А. Погорелко, Н. Я. Чернецов и др.). В 1939 начался промышленный выпуск радиолокационных станций (РЛС) непрерывного излучения (типа РУС-1); в 1940 — импульсных РЛС, у которых излучение и приём осуществлялись с помощью одной — общей — антенны («Редут», РУС-2; во время Великой Отечественной войны было налажено производство малогабаритных и весьма надёжных РЛС «Пегматит»). Большую роль в развитии советской радиолокации и тесно связанной с ней радионавигации сыграли работы А. Ф. Иоффе, С. И. Вавилова, А. А. Чернышева, А. И. Берга, Б. А. Введенского, М. А. Леонтовича, Л. И. Мандельштама, Н. Д. Папалекси, В. И. Баженова, М. В. Шулейкина, А. А. Пистолькорса, А. Н. Щукина, Я. Н. Фельда и др.
Ещё в конце 20 — начале 30-х гг. началось применение методов и устройств радиотехники и электроники в областях, находящихся вне сферы традиционных (электросвязь, радиовещание, телевидение и т. д.) приложений радиотехники. Так, в 1928 С. Я. Соколов создал ультразвуковой дефектоскоп для контроля качества металлических материалов и изделий. Эта работа положила начало развитию интроскопии. В середине 20-х гг. В. П. Вологдин начал применение ВЧ колебаний для теплового воздействия на материалы в технологических целях. Это направление позволило разработать целый ряд методов и устройств, эффективно используемых в современных установках ВЧ промышленной технологии. В конце 30-х гг. начались работы по созданию электронного микроскопа. Наибольшие успехи были достигнуты в Государственном оптическом институте в Ленинграде, где в 1940 удалось разработать электронный микроскоп, позволявший получать увеличение до 104 (А. А. Лебедев).






