Тема № 8. Источники загрязнения водоемов

Одна из наиболее острых экологических проблем — состояние поверхностных вод, т.е. рек и озер. Проблема состояния поверхностных вод имеет два аспекта: количественный и качественный. И тот, и другой аспект составляют одно из важнейших условий существования живых существ, в том числе и особенно — человека. Хотя морские воды представляют собой объект, отличающийся от поверхностных вод, проблемы воздействия антропогенной деятельности на моря и последствия их во многом схожи с проблемами поверхностных вод.

Оценка качества поверхностных вод (прежде всего степени их загрязненности) относительно хорошо разработана и базируется весьма представительном пакете нормативных и директивных документов, использующих прямые гидрохимические и гидрологические методы и критерии оценки.

Оценка количественных аспектов водных ресурсов (в т.ч. их загрязнения) преследует двоякую цель. Во-первых, необходимо оценить возможности удовлетворения потребностей планируемой деятельности в водных ресурсах, а во-вторых, последствия возможного изъятия и части этих и загрязнения оставшихся ресурсов для других предприятий и жизнедеятельности населения.

Для таких оценок необходимо исходить из знания гидрологических особенностей и закономерностей режима водных объектов, являющихся источниками водоснабжения, а также существующие уровни водопотребления и объемов водных ресурсов, требуемых для реализации проекта. Последнее включает в себя также технологическую схему водопотребления (безвозвратное, оборотное, сезонное и т.д.) и является оценкой прямого воздействия планируемой деятельности на количество водных ресурсов.

Однако большое значение имеет также косвенное воздействие, сказывающееся, в конечном счете, на гидрологических характеристиках водных объектов. К косвенным воздействиям относятся нарушения русла рек (драгами, земснарядами и др.), изменение поверхности водосбора (распашка земель, вырубка лесов), подпруживание (подтопление) при строительстве или понижение уровня грунтовых вод и многое другое. Необходимо выявить и проанализировать все возможные виды воздействий и вызываемых ими последствий.

Наиболее распространенным и существенным фактором, обуславливающим дефицит водных ресурсов во многих регионах, является загрязнение водных источников, о котором обычно судят по данным режимных и других наблюдений службами мониторинга Росгидромета и других ведомств, контролирующих состояние водной среды.

Каждый водный объект обладает присущим ему природным гидрохимическим качеством, являющимся его исходным свойством, которое формируется под влиянием гидрологических и гидрохимических процессов, протекающих в каждом водоеме, а также интенсивности его внешнего загрязнения. Совокупное воздействие этих процессов способно как нейтрализовать вредные последствия попадания в водоемы антропогенных загрязнителей (самоочищение водоемов), так и привести к их стойкому ухудшению качества водных ресурсов (загрязнение, засорение, истощение).

Способность самоочищения каждого водного объекта, т.е. количество загрязняющих веществ, которое может быть «переработано» и нейтрализовано водоемом, зависит от разных факторов и подчиняется определенным закономерностям (поступающее количество воды, разбавляющей загрязненные стоки, её температура, изменение этих показателей по сезонам, качественный состав загрязняющих ингредиентов и др.).

Пожалуй, одним из главных факторов, определяющих возможные уровни загрязнения водоемов, помимо их природных свойств, является исходное гидрохимическое состояние, возникающее под влиянием антропогенной деятельности. Прогнозные оценки состояния загрязнения водоемов могут быть получены путем суммирования существующих уровней загрязнения и дополнительных количеств ЗВ, планируемых к поступлению от проектируемого объекта. При этом необходимо учитывать как прямые (непосредственный сброс в водоемы), так и косвенные (поверхностный сток, внутрипочвенный сток, аэрогенное загрязнение и т.д.) источники.

Основным критерием загрязнения воды также являются ПДК, среди которых различают санитарно-гигиенические (нормируют по влиянию на здоровье человека), и рыбохозяйственные, разработанные для защиты гидробионтов (живых существ водных объектов). Последние, как правило, строже, т.к. обитатели водоемов обычно более чувствительны к загрязнению, нежели человек.

Основным источником информации о гидрологических и гидрохимических свойствах водоемов являются материалы наблюдений, осуществлявшихся в сети ОГСНК (Общегосударственная сеть наблюдения и контроля Роскомгидромета СССР) и ныне проводимые в рамках формирующейся ЕГСЭМ (Единой государственной системы экологического мониторинга) России.

Помимо вышеуказанных важное место среди критериев экологической оценки состояния водных объектов занимают индикационные критерии оценки. В последние годы биоиндикация (наряду с традиционными химическими и физико-химическими методами) получила достаточно широкое распространение при оценках качества поверхностных вод. Она по функциональному состоянию (поведению) тест - объектов (ракообразные ‑ дафнии, водоросли ‑ хлорелла, рыбы ‑ гуппи) позволяет ранжировать воды по классам состояний (норма. риск, кризис, бедствие) и по существу дает интегральную оценку их качества, а также определяет возможность использования воды для питьевых и других, связанных с биосферой, целей.

Лимитирующим фактором использования метода биотестирования является высокая продолжительность анализа (не менее 4 суток) и отсутствие информации о химическом составе воды. Пример использования биотестов для определения качества воды приводится в табл. 2 (данные Ю.Я. Кислякова).

Цифры в таблице:

для дафний ‑ % гибели в течение 96 час. экспозиции в тестируемой воде;

для хлореллы ‑ % уменьшения числа клеток в тестируемой воде по сравнению с контрольной;

для гуппи ‑ % гибели в течение 96 час. экспозиции в тестируемой воде.

Таблица 2. Критерии оценки состояния поверхностных и сточных вод на основе биотестов

ОЦЕНОЧНЫЕ ПОКАЗАТЕЛИ Классы состояния поверхностных вод
Норма (Н) риск (Р) кризис (К) Бедствие (Б)
Ракообразные (дафнии) менее 10     более 60
Водоросли (хлорелла) менее 10     более 60
Рыбы (гуппи) менее 10     более 60

Приведенные в таблице классы состояния поверхностных вод соответствуют:

Н ‑ нормальной степени загрязнения;

Р ‑ малой степени превышения нормы загрязнения;

К ‑ средней степени превышения нормы загрязнения;

Б ‑ катастрофически высокой степени загрязнения.

Не менее важными, чем показатели качества вод, являются ресурсные критерии оценки. Для поверхностных вод в качестве критериев оценки их ресурсов рекомендуются два наиболее емких показателя: величина поверхностного (речного) стока или изменение его режима применительно к определенному бассейну и величина объема единовременного отбора воды.

Эти критерии, с ранжирование по классам состояния, приведены в табл. 3. Сами критерии являются общепризнанными и используются в указанных нормативных документах, а их градация по классам состояния поверхностных вод условная, но опирается на данные из публикаций специалистов.

Учитывая всё вышеуказанное, при обосновании и оценке воздействия на поверхностные воды Регламентом проведения ГЭЭ рекомендуется рассматривать следующее:

Таблица 3. Ресурсные критерии оценки состояния поверхностных вод

ОЦЕНОЧНЫЕ ПОКАЗАТЕЛИ Классы состояния поверхностных вод
I - норма (Н) II - риск (Р) III - кризис (К) IV - бедствие (Б)
Изменение речного стока (в % от первоначального) менее 15 15-20 50-70 более 75
Объем возможного единовременного водоотбора (куб. м/с) менее 5 1-5 Менее 1 отсутствует

1. Гидрографическая характеристика территории.

2. Характеристика источников водоснабжения, их хозяйственное использование.

3. Оценка возможности забора воды из поверхностного источника на производственные нужды в естественных условиях (без регулирования речного стока; с учетом существующей зарегулированности речного стока).

4. Местоположение водозабора, его характеристика.

5. Характеристика водного объекта в расчетном створе водозабора (гидрологический, гидрохимический, ледовый, термический, скоростной режимы водного стока, режим наносов, русловые процессы, опасные явления: заторы, наличие шуги).

6. Организация санитарно-защитной зоны водозабора.

7. Водопотребление в период строительства объекта. Водохозяйственный баланс предприятия. Оценка рациональности использования воды.

8. Характеристика сточных вод - расход, температура, состав и концентрации загрязняющих веществ.

9. Технические решения по очистке сточных вод в период строительства объекта и его эксплуатации - краткое описание очистных сооружений и установок (технологическая схема, тип, производительность, основные расчетные параметры), ожидаемая эффективность очистки.

10. Повторное использование вод, оборотное водоснабжение.

11. Способы утилизации осадков очистных сооружений.

12. Сброс сточных вод - место сброса, конструктивные особенности выпуска, режим отведения сточных вод (периодичность сбросов).

13. Расчет предельно-допустимого сброса (ПДС) очищенных сточных вод.

14. Характеристика остаточного загрязнения при реализации мероприятий по очистке сточных вод (в соответствии с предельно-допустимым сбросом).

15. Оценка изменений поверхностного стока (жидкого и твердого) в результате перепланировки территории и снятия растительного слоя, выявление негативных последствий этих изменений на водный режим территории.

16. Оценка воздействия объекта на поверхностные воды в процессе строительства и эксплуатации, включая последствия воздействия отбора воды на экосистему водоема; тепловое, химическое, биологическое загрязнение, в том числе при авариях.

17. Оценка изменений русловых процессов, связанных с прокладкой линейных сооружений, строительством мостов, водозаборов, и выявление негативных последствий этого воздействия, в том числе на гидробионты.

18. Прогноз воздействия намечаемого объекта (отбор воды, остаточное загрязнение при сбросе очищенных сточных вод, изменение температурного режима и др.) на водную флору и фауну, на хозяйственное и рекреационное использование водных объектов, условия жизни населения.

19. Организация контроля за состоянием водных объектов.

20. Объем и общая стоимость водоохранных мероприятий, их эффективность и очередность реализации, включая мероприятия по предупреждению и ликвидаций последствий аварий.

Оценка воздействия на литосферу. Основные признаки, характеризующие литосферу и влияющие на деятельность людей, а также, в свою очередь, испытывающие воздействие, включают в себя комплекс факторов, которые подлежат оценке и анализу в процессе разработки ОВОС, поскольку вносят существенный вклад в формирование экологических условий, как в естественной, так и в техногенной среде.

В первую очередь необходимо оценивать возможность и силу землетрясений, извержений вулканов и других природных катастрофических процессов, которые относятся к внезапным экстремальным явлениям, но тем разрушительнее их последствия. Разрушение же функционирующего объекта также может вызвать катастрофические последствия для окружающей среды, но уже антропогенного характера (например, разрушение АЭС, разрывы нефте- и газопроводов и др.). Необходимо предвидеть также возможные последствия, связанные с незаметным для человеческого глаза, но опознаваемые по косвенным признакам тектонические движения фундамента земной коры, которые могут проявиться в аварийных явлениях на реализованных проектах.

Важным фактором, подлежащим оценке, является литология пород, слагающих данный район, особенно поверхностных, со всеми их свойствами (реакция на физические воздействия, изменения свойств при контакте с водой, химический состав, наличие многолетнемерзлых пород и пр.). Исходные свойства пород предопределяют прогноз их состояния при различных видах воздействия.

Особое значение имеет оценка воздействия на подземные воды, которые очень часто служат основным источником водоснабжения, особенно бытового. Оценить степень защищенности подземных вод от поверхностного загрязнения поможет анализ геологического строения территории и возможные нарушения целостности перекрывающих пластов, ведущие к проникновению загрязнений во внутрь.

Наконец, заключительным разделом оценки воздействия на литосферу, является геоморфологического строения местности с динамическими тенденциями современных процессов рельефообразования и прогноз возможного изменения этих тенденций (в сторону усиления или сокращения) под влиянием осуществления данного проекта. Оценке подлежат процессы водной и ветровой эрозии, карстообразования, многолетние мерзлотные явления, а также процессы, связанные с подтоплением территории, а также их прямые и косвенные последствия для других оцениваемых факторов. Литосфера тоже испытывает прямые и косвенные воздействия изменений других факторов, которые также необходимо выявить и оценить.

Отличительной чертой литосферы как геосферной оболочки является её многокомпонентность, включающая в себя рельеф, поверхностную часть литосферы (собственно геологическую среду) и развитые на территории природные и антропогенные геологические процессы. Соответственно, требуется большой набор критериев оценки и особые подходы к их интеграции. Многие вопросы в этой области регламентируются имеющимися нормативно-правовыми и нормативно-техническими документами.

Прямые критерии оценки. Наиболее известны геохимические критерии. Их применение основано на сопоставлении существующего загрязнения литосферы с и её компонентов (вместе с подземными водами) с ПДК или фоном с учетом токсичности вещества-загрязнителя (ЗВ). По аналогии с атмосферой и водами, в общем виде такая оценка с ранжированием по классам, представлена в табл. 4. Предлагаемая таблица позволяет оценить состояние литосферы и её компонентов по любому ЗВ или их сумме.

Подземная гидросфера (подземные воды) также довольно четко регламентирована и оценки её качества устанавливаются по отношению к соответствующим ПДК. Для оценки масштабов техногенного загрязнения подземных вод В.М. Гольдберг предлагает ввести физические точки их отсчета. Такими точками отсчета могут быть качество подземных вод в естественном состоянии (Се) и предельно-допустимая концентрация ЗВ в подземных водах, используемых для питьевых целей.

Таблица 4. Геохимические критерии оценки состояния литосферы

ОЦЕНОЧНЫЕ ПОКАЗАТЕЛИ Классы состояния поверхностных вод
I ‑ норма (Н) II ‑ риск (Р) III ‑ кризис (К) IV – бедствие (Б)
Концентрации всех определяемых элементов и соединений фоновые или ниже ПДК 1--5 ПДК (2-й и 3-й классы опасности); 1 ПДК (1-й класс опасности) 5--10 ПДК (2-й и 3-й классы опасности); 1‑5 ПДК (1-й класс опасности) Более 10 ПДК (2-й и 3-й классы опасности); более 5 ПДК (1-й класс опасности)

Приведенные в таблице классы состояния литосферы соответствуют:

Н ‑ нормальной степени загрязнения;

Р ‑ малой степени превышения нормы загрязнения;

К ‑ средней степени превышения нормы загрязнения;

Б ‑ катастрофически высокой степени загрязнения.

Кроме того, для характеристики масштабов загрязнения подземных вод важное значение имеет размер площади (F) области загрязнения. Таким образом, состояние загрязнения подземных вод дается по двум показателям: качеству подземных вод (С) и ранее указанный параметр F.

На этой основе выделяются 4 уровня состояния подземных вод или аналогичных классов их состояний:

класс нормы (относительное благополучие). В основном качество подземных вод соизмеримо с Се, может превышать его, но не подниматься выше ПДК. То есть: Се < С/ПДК, при этом область загрязнения или вообще отсутствует или незначительна по размерам (F < 0,5 кв. км);

класс риска (проявление постоянных тенденций негативных изменений). Качество подземных вод непрерывно ухудшается, оно достигло ПДК или превышает его, но не свыше 3-5 ПДК на отдельных участках (F от 0,5 до 5 кв. км);

класс кризиса (кризисное состояние). Качество подземных вод на больших площадях существенно превышает ПДК (до 10 раз), т.е. ПДК < С/ПДК, при этом размеры площадей загрязнения меняются от 5 до 10 кв. км;

класс бедствия (катастрофическое состояние). Качество подземных вод в зоне загрязнения более 10 ПДК с тенденцией к ухудшению, при этом размеры площади загрязнения более 10 кв. км с тенденцией к увеличению.

В первой зоне не требуется никаких специальных природоохранных мер, кроме соблюдения требований законодательства и осуществления планового контроля за состоянием подземных вод.

Во второй зоне должны быть предусмотрены ограничительные природоохранные меры.

В третьей, а, в особенности, в четвертой зонах необходимо незамедлительное осуществление специальных защитных мер.

Ресурсные критерии оценки подземных вод. Для подземных вод в качестве критерии оценки их ресурсов рекомендуются следующие основные показатели: модуль эксплуатационных запасов (л/с с кв. км территории), который при необходимости может быть дифференцирован по водоносным горизонтам, используемым для централизованного водоснабжения и величина сработки водоносных горизонтов. Эти показатели наиболее целесообразно использовать на предпроектной стадии работ.

Геодинамическая группа критериев литосферы используется преимущественно для оценки состояния рельефа и развития природных и техногенно - активизированных геологических процессов. Для рельефа и подземного пространства можно предложить 2 показателя: площадь и глубину техногенной переработки (нарушенности, освоенности, застроенности), пример использования которых, приведен в табл. 5.

Таблица 5. Геодинамические критерии оценки состояния литосферы

ОЦЕНОЧНЫЕ ПОКАЗАТЕЛИ измененности рельефа Классы экологического состояния территории
норма (Н) риск (Р) Кризис (К) Бедствие (Б)
Площадь техногенного рельефа к площади участка менее 10 % 10-25 % 25-50 % более 50 %
Техногенный размах рельефа (м) менее 10 10-20 20-50
Площади подработанных территорий (%) более 10 10-20 20-40 более 50

Приведенные в таблице классы состояния поверхностных вод соответствуют:

Н ‑ благоприятное состояние территории (норма);

Р ‑ ограниченно благоприятное состояние территории;

К ‑ неблагоприятное состояние территории;

Б ‑ катастрофическое состояние территории.

Рекомендованные градации геодинамических критериев оценок состояния литосферы довольно условны (научного обоснования для них пока не существует) и ориентировочны. Они годятся, главным образом, для предварительной оценки измененности рельефа на стадии предпроектных разработок. На более поздних стадиях проекта критерии оценки могут быть трансформированы по количественным значениям выделяемых градаций в соответствии с конкретными условиями территории и характером планируемого техногенного воздействия.

Оценка площадей и относительной пораженности территории природными и антропогенными геологическими процессами изложена во множестве публикаций, однако узаконенных, нормированных количественных значений пока не имеет. Обобщение разработок ВСЕГИНГЕО и МГУ позволяет предложить следующую шкалу оценок, представленных в табл. 6.

Таблица 6. Критерии оценки состояния литосферы (рельефа) по развитию геологических процессов

ОЦЕНОЧНЫЕ ПОКАЗАТЕЛИ Классы геоэкологического состояния территории
I - норма (Н) II - риск (Р) III - кризис (К) IV - бедствие (Б)
Площадная пораженность опасными геологич. процессами (ОГП), в % менее 5 5-25 25-50 более 50
Сложность инженерно-геологических условий (меры инженерной защиты о ОГП) несложные (локальные меры) сложные (меры на огранич. террит.) весьма сложные (повсеместная защита) систематические катастрофы (меры не гарант. безопасности)

При практической реализации предлагаемых критериев оценки необходимо учитывать, что ключевым моментом является выделение для каждой территории ведущих, наиболее опасных геологических процессов или их парагенезов. Критерием такого выделения является оценка эколого-экономического ущерба для данной территории при определенных видах техногенного воздействия.

Интегральная оценка измененности геологической среды. В настоящее время существует несколько методических подходов к суммарной (интегральной) оценке состояния геологической среды и степени её измененности.

Первый (градации по степеням покомпонентной измененности) базируется на использовании двурядной матрицы, на которой по вертикальной шкале располагаются анализируемые компоненты геологической среды с разбивкой по степени измененности, а по горизонтальной шкале ‑ группы оценочных критериев. Все они индексируются, что позволяет на пересечении вертикальных и горизонтальных граф получить искомую оценку состояния каждого компонента геосреды по степени измененности для всех оценочных критериев. На карту выносится индекс, а его расшифровка дается в экспликации. Суммарный учет частных оценок проводится путем отбора наиболее измененных компонентов геосреды с составлением карт «семафорного» типа, на которых указывается в каждом выделенном контуре через циклограммы степень и характер измененности.

При практическом использовании такого подхода рекомендуется отбраковка второстепенных критериев и выбор определяющих, в ходе чего учитываются только те компоненты геологической среды, на которые ожидается основное антропогенное воздействие. Вариантом этого метода показа суммарной оценки является отражение её не на одной карте, а на нескольких оценочных картах. Очевидно, что критерии оценки гидрохимической группы целесообразно объединить на одной карте, геологическую основу которой будет составлять либо оценка защищенности от загрязнения первого (поверхностного) водоносного горизонта, либо (в более широком плане) ‑ учет чувствительности территории к техногенному загрязнению. Критерии оценок остальных групп (инженерно-геологические, геодинамические, ландшафтные, ресурсные) следует показывать на другой карте, геологическую основу которой составляют таксоны типологического, инженерно-геологического районирования с выделением типов строения геологической среды (ГС) на глубину техногенного воздействия. Общей рекомендацией является выбор и отражение на карте не более 4-5 критериев оценки по единой шкале градаций измененности ГС.

Второй способ (градации относительной пораженности и измененности) получения суммарных оценок степени геоэкологической измененности территории реализуется через учет коэффициента площадной пораженности и относительной измененности, путем их суммирования по всем рассматриваемым критериям и компонентам среды.

Для каждого вида воздействия определяется площадь пораженности Si по градациям степени измененности. Далее определяется отношение площади пораженности к оцениваемой площади участка (Kpi), определяется для каждого вида воздействия с учетом степени измененности (интенсивности пораженности) по формуле Gi = Kpi х ni, где ni ‑ интенсивность пораженности (градации). Затем все Gi суммируются, и в итоге полученная величина отражает искомую суммарную (интегральную) измененность территории таксона районирования. Такая оценка является относительной, хотя и характеризует вполне определенные (в физическом выражении) участки территории, пораженные тем или иным антропогенным воздействием.

Данные общие методические подходы и правила рекомендуются к использованию при проведении экологических экспертиз, что в равной степени относится как к составителям и разработчикам ОВОС, так и к членам экспертных (в т.ч. общественных) комиссий.

Учитывая всё вышеуказанное, при обосновании и оценке воздействия на литосферу (геологическую среду, включая подземные воды) Регламентом проведения ГЭЭ рекомендуется рассматривать следующее.

1. Геологические и гидрогеологические особенности территории, геологические процессы и явления.

2. Оценка устойчивости грунтов и активности геологических процессов при техногенном воздействии.

3. Прогноз изменений геодинамических условий (изменения напряженности массива пород, возможность деформаций и т.д.).

4. Прогноз последствий теплового воздействия на грунты - изменение термодинамических условий (уровня сезонного протаивания, многолетней мерзлоты, активизация криогенных и других геологических процессов).

5. Прогноз влияния неблагоприятных геологических явлений и процессов на возможность проявления аварийных ситуаций.

6. Прогноз изменений гидрогеологических условий (усиление или ослабление водообмена, образование новых водоносных горизонтов, смешение вод, изменение уровней подземных вод, напоров, скоростей, направления движения, изменение газового и химического состава и температуры).

7. Прогноз возможного загрязнения и истощения подземных вод при техногенном воздействии.

8. Прогноз воздействия добычи минеральных и сырьевых ресурсов на различные компоненты природной среды.

9. Мероприятия по рациональному использованию недр.

10. Мероприятия по защите подземных вод от загрязнения и истощения.

11. Мероприятия по локализации последствий аварийных ситуаций, нарушающих геологическую среду.

12. Рекомендации по составу и размещению режимной сети скважин для изучения, контроля и оценки состояния горных пород и подземных вод в процессе эксплуатации намечаемого строительства.

13. Предложения по возможно более полному извлечению и комплексному использованию полезных ископаемых из недр, исключающих снижение качества запасов подземных ископаемых на соседних участках и в районе их добычи (в результате обводнения, выветривания, окисления, возгорания и т.д.).

14. Обоснование возможности подземного захоронения вредных веществ и отходов производства.

15. Объем природоохранных мероприятий и оценка стоимости мероприятий по охране геологической среды и мер по предотвращению и ликвидации аварийных ситуаций.

Широко известно знаменитое определение В.В. Докучаева: «Почва — зеркало ландшафта». Это справедливо как для естественных, не затронутых антропогенной деятельностью почв, так и для почв, подвергающихся антропогенному воздействию. Воздействия на все компоненты ландшафта как в зеркале отражаются в почве (педосфере). Именно поэтому анализ состояния и динамики почвенного покрова может многое сказать о современной и будущей экологической ситуации в районе той или другой человеческой деятельности. Кроме того, почва выполняет важные санитарные функции и является мощным фактором перераспределения прямого влияния техногенной деятельности на ландшафт.

Почва представляет собой особое природное тело, отличающееся от горных пород, на которых оно формируется. Главным свойством, отличающим почву, является её плодородие. Это позволяет отнести почвенный покров к экономической категории производительных сил, в особенности в тех районах, где сочетание тепла и влаги позволяют реализовывать её как производительную силу. Именно в этих земледельческих районах почва представляет особую ценность, и охрана её от загрязнения, истощения, механического разрушения и прямого изъятия (уничтожения) из производства биомассы ‑ главная цель оценки планируемой хозяйственной деятельности на почвенный покров региона.

Снижение плодородия почвы может происходить под влиянием различных воздействий, которые можно разделить на два типа ‑ механические и химические.

Механические воздействия включают в себя разрушение плодородного (гумусового) горизонта под влиянием прямого или косвенного антропогенного воздействия (прежде всего строительные работы, сопровождающиеся передвижениями тяжелой техники, ветровая и водная эрозия, активизирующаяся после уничтожения растительного покрова или неправильной распашки и др.), а также прямое изъятие земель в постоянное и временное пользование. Земли временного отвода впоследствии подлежат рекультивации.

Задача экологической оценки и прогноза заключается в том, чтобы путем всестороннего анализа планируемой деятельности подтвердить (или сформировать) оптимальное для данного проекта решение о выборе земельного участка, соотношении земель постоянного и временного отвода, методах строительства и эффективных методах послестроительной рекультивации.

При этом оценке подлежат не только почвы сельскохозяйственного использования, но и почвы под естественными фитоценозами всех географических зон и провинций, т.к. нарушения почвенно-растительного покрова могут повлечь за собой цепочку взаимосвязанных негативных экологических последствий (растепление многолетней мерзлоты; уничтожение местообитаний растений и животных и как следствие ‑ сокращение их ареалов; ухудшения качества и понижение уровня грунтовых вод и т.д.).

Ресурсные критерии оценки состояния педосферы как раз включают параметры изменения (механических и других) и являются одними из основных для оценки состояния экосистемы в целом, так как ухудшение свойств почв является одним из наиболее сильных факторов формирования зон экологического риска, кризиса или бедствия. Прежде всего, это снижение плодородия почв на большой площади и с высокой скоростью. Почвенно-эрозийные критерии связаны с вторично антропогенными геоморфологическими процессами, ускоренными антропогенной деятельностью. Эти процессы распространены и в естественных условиях, но нарушение человеком устойчивости растительного и почвенного покрова (вырубкой лесов, распашкой почв, перевыпасом пастбищ и т.п.) вызывают их значительное ускорение и расширение их площади.

Одним из интегральных показателей загрязнения почвы является её фитотоксичность (свойство почвы подавлять рост и развитие высших растений) и генотоксичность (способность влиять на структурно-функциональное состояние почвенной биоты).

Индикационные критерии как раз и основаны обычно на гентоксичности, будучи реализованы через уровень активной микробной биомассы (снижение в число раз), биомассу почвенной мезофауны и численность почвенных микроартопод (колемболы, арбатидные клещи и т.д.) от нормального природного уровня. Они ранжируются по классам и одновременно могут быть использованы для оценки состояния экосистемы. Все они направляют ход почвенных микробиологических процессов и осуществляют так называемые «цепи питания» в почвах, что позволяет считать учет их численности и массы интегральным показателем.

Пример выделения зон экологического состояния по основным почвенным критериям приведен в табл. 7.

Таблица 7. Почвенные критерии нарушения экосистем

ОЦЕНОЧНЫЕ ПОКАЗАТЕЛИ Классы геоэкологического состояния педосферы
I - норма (Н) II - риск (Р) III - кризис (К) IV - бедствие (Б)
Плодородие почвы (в % от потенциального) более 85 85- 65 65-25 менее 25
Содержание гумуса (в % от превоначального) более 90 90-70 70-30 менее 30
Площадь вторичного засоления почв (в %) менее 5 5-20 20-50 более 50
Глубина смытости почвенных горизонтов смыт горизонт А1 или 0,5 гор. А смыт горизонт А и частично АВ смыты горизонты А и В
Площадь ветровой эрозии (полн. сдутые почвы, в %) менее 5 10-20 20-40 более 40

Химические воздействия на почву, т.е. её загрязнение, осуществляемое различными источниками и способами, также может носить прямой и косвенный характер. Прямое загрязнение происходит путем непосредственного попадания загрязняющих веществ на её поверхность (свалки твердых бытовых отходов, розливы нефти, буровых растворов и др. загрязняющих жидкостей, внесение удобрений, обработка различными ядохимикатами и т.д.). Косвенное загрязнение связано с аэрогенным выпадением загрязняющих веществ, с подпиткой загрязненными грунтовыми водами. Любой из этих видов загрязнений или несколько из них могут быть связаны с планируемым видом антропогенной деятельности.

Всё многообразие характеристик загрязнения почв рассматривается в соответствующих нормативных документах.

Анализ литературных публикаций по этому вопросу позволил предложить укрупненные показатели оценки техногенной загрязненности почв с количественным ранжированием значений по классам состояний, приведенным в табл. 8.

Таблица 8. Укрупненные показатели оценки техногенной загрязненности почвенного покрова с ранжированием значений по классам состояний

ОЦЕНОЧНЫЕ Классы геоэкологического состояния педосферы
ПОКАЗАТЕЛИ I - норма (Н) II - риск (Р) III - кризис (К) IV - бедствие (Б)
Содержание легко раствор. солей (вес. %) менее 0,6 0,6-1,0 1,0-3,0 более 3,0
Содержание токсичных солей (весовых %) менее 0,3 0,3-0,4 0,4-0,6 более 0,6
Содержание пестицидов и др. ядохимикатов (в ПДК) менее 0,1 1,0-2,0 2,0-5,0 более 5,0
Содержание полютантов (в единицах ПДК) менее 0,1 1,0-3,0 3,0-10,0 более 10,0
Содержание нефти и нефтепрод-в (вес. %) менее 0,1 1,0-5,0 5,0-10,0 более 10,0

Задача оценки возможного загрязнения почв и его последствий на основании биогеохимических свойств данной конкретной почвы ‑ выявить закономерности миграции, трансформации и аккумуляции ЗВ в почве (и сопряженных с нею других компонентов ландшафта) и установить возможные негативные последствия с целью их предотвращения (или минимизации).

Любая почва (как и другие компоненты окружающей среды) обладает способностью к самоочищению, и более того, является буфером между антропогенным загрязняющим воздействием на другие компоненты ландшафта, в т.ч. и в первую очередь, на живые организмы. Почва является главной ареной биогеохимического круговорота, в результате которого токсичные соединения могут превращаться в безвредные, в т.ч. нерастворимые формы, оседать на геохимических барьерах или, наоборот, попадая в почву в микроскопических количествах, аккумулироваться в растениях и, передаваясь по трофическим цепям, приносить в коечном итоге вред здоровью людей. Законы самоочищения почв и трансформации вещества в них определяются факторами почвообразования (соотношением тепла и влаги, физико-химическими свойствами почвообразующих пород, положением в рельефе, характером растительности и пр.), а также качеством и количествами ЗВ.

Критерием загрязнения почв также является соответствующая ПДК вредных веществ или предельно допустимый уровень (ПДУ) загрязнения почвы, разработанные пока ещё для сравнительно небольшой группы ЗВ. В случае отсутствия ПДК для какого-либо элемента (вещества) критерием его предельно допустимого содержания в почве служит его кларк, т.е. среднее содержание в земной коре.

Разработка оценок воздействия антропогенной деятельности на почву ‑ ещё более сложная задача, чем оценка воздействия на атмосферу, по причине пока ещё недостаточной изученности техногенных потоков вещества в различных типах почв.

Учитывая всё вышеуказанное, при обосновании и оценке воздействия на педосферу (состояние почв) Регламентом проведения ГЭЭ рекомендуется рассматривать следующее.

1. Характеристика почвенного покрова в зоне воздействия объекта (плодородие, физико-химические свойства), оценка состояния почвенного покрова.

2. Ограничения по использованию земель, включая ухудшение качественного состояния земель в зоне воздействия объекта.

3. Характеристика воздействия на почвенный покров, включая загрязнение территории промышленными отходами (вид, класс опасности, токсичность, физическое состояние, объем отходов, занимаемая отходами площадь).

4. Согласованные решения по снятию, транспортировке и хранению плодородного слоя почвы и вскрышных пород при строительстве объекта.

5. Прогноз изменений свойств почв и грунтов, обусловленных:

- перепланировкой поверхности территории и созданием новых форм рельефа;

- изменением активности природных процессов;

- загрязнением территории при строительстве и эксплуатации объекта, включая загрязнение отходами строительства и временными (сопутствующими) производствами.

6. Прогноз изменений свойств почв при возникновении аварий.

7. Последствия возможных изменений почв при реализации проектных решений.

8. Мероприятия по санации загрязненных почв в зоне возможного воздействия.

9. Мероприятия по утилизации и захоронению отходов.

10. Мероприятия по инженерной защите территории от подтопления и затопления.

11. Мероприятия по восстановлению нарушенных земель (проектные решения по отводу талого и ливневого стока, техническая и биологическая рекультивации), сроки восстановления.

12. Эффективность природоохранных мероприятий по санации почв и рекультивации нарушенных земель.

13. Определение размера убытков, причиняемых основным землепользователям при реализации проекта, включая упущенную выгоду.

14. Объем природоохранных мероприятий и оценка стоимости компенсационных мероприятий и мер по рекультивации, восстановлению и охране почв, включая аварийные ситуации.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: