Теорема Котельникова-Шеннона

Эта теорема уточняет результат предыдущего пункта.

Если исходный сигнал имеет ограниченный спектр и выполнено условие (5), то непрерывный сигнал можно восстановить по дискретному.

Доказательство. Пусть спектр сигнала находится в интервале . Выберем произвольное . Тогда . Функцию, заданную на конечном интервале, можно разложить в ряд Фурье: , где . Отсюда следует, что . Теперь . Положив . Получим

. (6)

Замечание. Обратим внимание, что в (5) должно выполняться строгое неравенство, если мы хотим, чтобы утверждение оставалось верным и для сигналов с преобразованием Фурье в виде обобщенной функции. В качестве примера рассмотрим . Спектр сигнала сосредоточен на интервале . Положим , тогда , но последовательность оказывается нулевой. То есть непрерывный сигнал не удается восстановить по дискретным значениям. Если же , то можно воспользоваться формулой (6).

Лекция 4. Дискретное преобразование Фурье (ДПФ)

В данной лекции установим свойства дискретного преобразования Фурье аналогичные свойствам непрерывного преобразования. Как обычно, преобразования типа почленного интегрирования ряда, перестановки порядка суммирования и т.п будут проводится без какого-либо обоснования. Предполагается, что соответствующие функции обладают необходимыми свойствами.

Основное определение:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: