Основные понятия теории измерений

Определение. Физическая величина – это понятие, определяющее некоторое свойство материального объекта, общее в качественном отношении для многих объектов, но в количественном отношении – индивидуальное для каждого объекта.

Примеры: длина, объем, масса, скорость, сила, напряженность поля, заряд и т.п.

Количественная характеристика физической величины – это ее численное значение (обозначим буквой х).

Качественная характеристика физической величины определяется ее размерностью (обозначим – [ х ]).

Обозначение физической величины Х:

Х=х·[х]

Итак, любая физическая величина обозначается в виде произведения ее числового значения и размерности.

Для каждой физической величины имеется единичная мера. Сводка таких мер с указанием размерности называется системой единиц физических величин. В настоящее время принята Международная система единиц (СИ), утверждены 7 основных единиц: метр, килограмм, секунда, Ампер, Кельвин, канделла, моль. Остальные единицы – называются производными, т.к. получаются комбинациями основных единиц. (Примечание: Хорошим пособием с описанием эталонов основных единиц СИ является книга: А. Г. Чертов. Единицы физических величин. М.: Высшая школа, 1977.- 287 стр.)

Определение. Измерением называется процедура нахождения численного значения исследуемой физической величины с помощью специальных технических средств: мер и приборов.

Мера – это эталон для сравнения исследуемой физической величины с единицей. (Примеры: линейки, разновесы (гири), специальные наборы электросопротивлений, электроемкостей и т.п.)

Прибор – это устройство для преобразования сведений об исследуемой физической величине в сигнал, доступный органам чувств человека. (Примеры: амперметры, вольтметры, манометры, осциллографы, спектрографы и т.д.)

Измерения подразделяются на два основных вида: прямые и косвенные измерения.

Определение. Измерения называются прямыми, если численное значение исследуемой физической величины определяется с помощью меры либо непосредственно с помощью показаний прибора. (Примеры: измерение линейных размеров, взвешивание, измерение напряжения в сети вольтметром, силы тока – амперметром и т.д.)

Определение. Измерения называются косвенными, если численное значение исследуемой физической величины определяется расчетом с помощью формулы, куда подставляют данные прямых измерений. (Примеры: измерение объемов по данным линейных замеров, плотности массы по данным взвешивания тел и др.)

Определение. Результатом измерения является (называется) совокупность среднего значения исследуемой физической величины и доверительного интервала, внутри которого с заданной доверительной вероятностью находится численное значение данной физической величины.

Результат измерения представляется в виде:

Х=(<х>±Δх)·[х]

Интервал: (< х>-Δх)<x<(<х>+Δх) – называется доверительным интервалом.

Здесь: <x> - среднее значение, где угловые скобки <..> - это символ, указывающий, что выполнена математическая операция усреднения; [ x ] – размерность. Δ х – отклонение от среднего, определяющее ширину доверительного интервала.

Примечание: величину Δ х часто называют погрешностью измерений, т.к. ее значение зависит от квалификации персонала, качества приборов и ряда других причин; значение Δ х может быть уменьшено, но не до нуля, т.к. абсолютно точных («истинных») числовых значений физических величин в природе не существует. Точные числа (например, 4.5 или 10) – это всегда абстракция. Можно сказать: «в комнате 10 столов», - но стол – это не физическая величина, если измерять размеры и массы этих столов – они всегда будут различаться между собой, кроме того массу и размеры каждого стола также можно измерить лишь в некоторых интервалах числовых значений.

Рассмотрим понятие «доверительная вероятность», которую обычно обозначают – p, и ее значение:

0<p<1

Смысл p – как доверительной вероятности – в том, что она определяет количество попаданий в найденный интервал ±Δ х из полного числа измерений данной физической величины. Если p =0,5 – это значит, что, например, из 10 выполненных измерений 5 найденных значений окажутся внутри интервала; при p =0,9 – 9 значений из 10 будут внутри интервала.

Примечание. В технике существует понятие «надёжность». Это понятие тесно увязано с понятием «доверительная вероятность», т.к. надежность техники обеспечивается качеством изготовления, которое контролируется измерениями.

Надежность обозначается α и находится в интервале 0< α <1. Допустим, надежность партии телевизоров α =0,9; это значит, что из 100 изготовленных телевизоров для 90 штук гарантируется безотказная работа на гарантийный срок, 10 штук – могут преждевременно выйти из строя, и для них завод-изготовитель выпускает запасные блоки для бесплатного ремонта.

Если представить, что пассажирские самолеты имеют надежность α =0,9 – это значит, что из 100 изготовленных самолетов 10 штук могут потерпеть аварию в первом же рейсе. Такая низкая надежность авиатранспорта недопустима. В авиации α ≈ 0,997, т.е. на 1 тысячу изготовленных самолетов допускается 3 аварии. Дальнейшее повышение надежности обходится очень дорого.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: