В любой совокупности материальных частиц имеется одна точка С, обладающая рядом важных свойств. Эта точка называется центром масс, или центром инерции, а ее положение относительно произвольно выбранного начала отсчета О определяется радиус-вектором
:
, где mi и
– масса и радиус-вектор i -й частицы,
– масса всей системы, а суммирование ведется по всем частицам системы.
Точка, определяемая радиус-вектором
, может не совпадать ни с одной из материальных точек, образующих систему. Например, у однородного кольца центр масс лежит в его геометрическом центре. У однородных симметричных тел (шар, диск, параллелепипед) центр масс совпадает с центром симметрии.
Скорость центра масс в данной системе отсчета:
,
где
и
– скорость и импульс i -й частицы. Отсюда следует, что полный импульс
системы, равный векторной сумме Σ
импульсов частиц, составляющих систему,:
, т.е. импульс системы равен произведению массы всей системы на скорость ее центра масс.
Если на систему материальных точек действуют внешние силы
, можно записать уравнения их движения:
;
; ···
. Если сложить эти уравнения, то получим:
. Сделав замены
и
получаем уравнение движения системы в виде:
.
Это выражение называется уравнением движения центра масс: при движении любой системы частиц ее центр масс движется так, как если бы вся масса системы была сосредоточена в этой точке и к ней были бы приложены все внешние силы, действующие на систему.
Если сумма внешних сил, действующих на систему, равна нулю, то центр масс движется равномерно и прямолинейно или покоится. В ИСО таким является случай замкнутой системы. Если
, то и полный импульс системы остается неизменным и по величине, и по направлению, т.е.
. Это означает, что внутренние силы не могут изменить скорость движения центра масс, хотя отдельные части системы могут двигаться относительно друг друга и их импульсы могут изменяться.