Подмножества. Отношение включения

Множество Х является подмножеством множества Y, если любой элемент множества Х ∈ и множеству Y. Обозначается X⊆Y.

Если необходимо подчеркнуть, что Y содержит и другие элементы, кроме элементов из Х, то используют символ строгого включения ⊂: X⊂Y. Связь между символами ⊂ и ⊆ дается выражением:

X⊂Y⇔ X⊆Y и X≠Y

Отметим некоторые свойства подмножества, вытекающие из определения:

1. X⊆Х (рефлексивность);

2. [X⊆Y и Y⊆Z] → X⊆Z (транзитивность);

3. ∅ ⊆ M. Принято считать, что пустое множество является подмножеством любого множества.

Исходное множество А по отношению к его подмножествам называется полным множеством и обозначается I.

Любое подмножество Аi множества А называется собственным множеством А.

Множество, состоящие из всех подмножеств данного множества Х и пустого множества ∅, называется булеаном Х и обозначается β(Х). Мощность булеана |β(Х)|=n.

Счетное множество — это такое множество А, все элементы которого могут быть занумерованы в последовательность (м.б. бесконечную) а1, а2, а3,..., аn,... так, чтобы при этом каждый элемент получил лишь один номер n и каждое натуральное число n было бы в качестве номера дано одному и лишь одному элементу нашего множества.

Множество, эквивалентное множеству натуральных чисел, называется счетным множеством.

Пример 1. Множество квадратов целых чисел 1, 4, 9,..., n2 представляет собой лишь подмножество множества натуральных чисел N. Множество является счетным, так как приводится во взаимно однозначные соответствия с натуральным рядом путем приписывания каждому элементу номера того числа натурального ряда, квадратом которого он является.

Существует 2 основных способа задания множеств:

1. перечислением (X={a,b}, Y={1}, Z={1,2,...,8}, M=

2. описанием — указывается характерное свойства, которым обладают все элементы множества.

Множество полностью определено своими элементами.

Перечислением можно задать только конечные множества (например, множество месяцев в году). Бесконечные множества можно задать только описанием свойств его элементов (например, множество рациональных чисел можно задать описанием Q={n/m, m, n∈Z, m≠0}.

Способы задания множества описанием:

а) заданием порождающей процедуры с указанием множества (множеств), которое пробегает параметр (параметры) этой процедуры — рекурсивный, индуктивный.

X={x: x1=1, x2=1, xk+2=k+xk+1, k=1,2,3,...} — множество чисел Фибониччи.

{множество элементов х, таких, что х1=2=1 и произвольное хk+1 (при к=1,2,3,...) вычисляется по формуле хk+2=k+хk+1} или Х=[x: x1=1, x2=1, x3=2, x4=3, x5=5, x6=8,...}

б) заданием вычислительной процедуры формульной зависимости:

X = {x: x=2sin(y)+1, y∈{0, p/2}} ⇔ {1, 3}

X = {x: x2-1=⇔{+1,-1}

в) заданием характеристического свойства (высказывания), выделяющего элементы данного множества из элементов других множеств — предикатный.

А={x: x — четное число}; M={x: p(x)} — множество х, обладающих свойством p

N={n: n∈Z, n>0, Z={-..., -2, -1, 0, 1, 2,...} — множество целых чисел

K={m: m=2, n∈N} — множество всех квадратов натуральных чисел, N={1, 2, 3,...}

X={x: 0≤x≤1, x∈N} ⇔ 1, 2, 3,..., где N-множество целых чисел.

г) заданием с помощью операций над множествами — аналитический.

Отметим некоторые свойства подмножества, вытекающие из его определения:

Если X⊆Y и Y⊆X → X=

Для любого множества само это множество и ∅ можно рассматривать как его подмножества, называемые несобственными. Все другие подмножества — собственные.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: