Концепции материи, движения, пространства и времени

Важнейшая задача естествознания – создание естественно-научной картины мира, образующей в целом упорядоченную систему, которая по мере развития науки уточняется и дополняется. Научный язык во многом похож на повседневный язык общения людей, но отличается от него тем, что научные термины являются, во-первых, более общими и абстрактными и, во-вторых, они более сконцентрированны и точны. Наука стремится выявить общее в предметах и явлениях, которые она изучает.

Выделение общего ведет к абстракциям, т. е. отвлечению от единичного, конкретного, случайного.

Наиболее общие и абстрактные понятия, идеи и концепции естествознания выражают, с одной стороны, глубокие, а с другой – общие свойства природы. Такими понятиями и концепциями оперирует в первую очередь физика как фундаментальная основа естествознания. К наиболее общим, важным, фундаментальным концептам физического описания природы относятся материя, движение, пространство и время.

Эти понятия широко используются не только в естествознании, но и во многих гуманитарных сферах, например, в искусстве, в экономике, не говоря уже о философии.

Окружающий нас мир, все существующее вокруг нас и обнаруживаемое нами посредством ощущений представляет собой материю. Материя есть философская категория для обозначения объективной реальности, которая... отображается нашими ощущениями, существуя независимо от них. Кто знает, может быть, данное определение не является исчерпывающим – это покажет дальнейшее развитие науки. В классическом представлении в естествознании различают два вида материи: вещество и поле. В современном представлении к ним следует добавить третий вид материи – физический вакуум. Некоторые ученые в духе концепции корпускулярно-волнового дуализма объединяют вещество и поле в единый вид реальности, которая действует на наши органы чувств и взаимодействует сама с собой, проявляясь в одних условиях как вещество (физические тела, молекулы, атомы, частицы), а в других – как поле (свет, радиация, гравитация, радиоволны). Однако такое объединение в большей степени касается не макро-, а микромира, многие свойства которого носят квантово-механический характер.

В классической механике Ньютона в качестве вещественных образований выступают материальная частица малых размеров – корпускула, часто называемая материальной точкой, и физическое тело, или просто тело как единая система корпускул, каким-то образом связанных между собой. Вряд ли вызывает сомнение существование этих вещественных образований в различных конкретных формах: песчинка, камень, капля воды и т. п. Что касается проблемы делимости вещества или дилеммы «атомизм – безграничная делимость», то она в значительной степени решена физиками и химиками только в начале нашего столетия, когда было экспериментально подтверждено существование атомов и молекул – мельчайших частиц химического элемента и химических соединений.

Идеальными и предельно абстрактными физическими образами реально существующих частиц и тел в классической механике служат материальная точка и абсолютно твердое тело как система материальных точек.

Повседневный опыт показывает, что тела действуют друг на друга, порождая всевозможные изменения движения. Взаимодействие тел в макромире происходит под действием силы тяготения или электромагнитных сил. В классической механике понятие силы считается фундаментальным. Сила – физическая мера взаимодействия тел и причина изменения их механического движения, т. е. их перемещения друг относительно друга.

Источником силы в соответствии с законом всемирного тяготения является масса тел. Таким образом, понятие массы, введенное впервые Ньютоном, более фундаментально, чем понятие силы.

Согласно квантовой теории поля частицы, обладающие массой, могут рождаться из физического вакуума, представляющего собой совокупность частиц с соответствующими им античастицами, при достаточно высокой концентрации энергии, которая тем самым выступает как еще более фундаментальная и общая концепция, чем масса, поскольку энергия присуща не только веществу, но и безмассовым полям.

Развитие физики в XIX в. показало, что источником другой разновидности сил, действующих в макромире, – электрических и магнитных – является электрический заряд, что хорошо подтверждается законом Кулона, формулой для силы Лоренца и уравнениями электромагнитной теории Максвелла. Хотя реальное существование электрического заряда доказано и теоретически, и экспериментально, многие вопросы, связанные с его происхождением, знаком, квантованностью и т. п., предстоит еще выяснить.

Возвращаясь к концепции массы, отметим, что в отличие от электрического заряда масса не квантируется. Однако, возможно, данное утверждение соответствует только современному представлению о микромире.

Масса выступает не только как мера гравитационного взаимодействия, но и как мера инертности тел, т. е. способности тел сопротивляться воздействию сил, стремящихся изменить состояние их движения, изменить их скорость. В этой связи часто говорят о массе тяжелой как мере гравитационного взаимодействия и о массе инертной как мере инертности.

Согласно закону Ньютона о противодействующих силах такое утверждение означает, что сила тяготения должна быть прямо пропорциональной не только массе притягиваемого тела m1, но и массе притягивающего тела m2, т. е. произведению масс обоих взаимодействующих тел. Если взаимодействующие тела принять за материальные точки, расположенные на расстоянии r друг от друга, то для силы гравитационного взаимодействия F можно написать:

где G – гравитационная постоянная.

Данной формулой определяется закон всемирного тяготения, сформулированный Ньютоном.

Относительно точные измерения показывают, что массы тяжелая и инертная равны между собой. Этот факт, никак не объяснимый классической механикой, фигурирует в общей теории относительности, в которой понятие силы оказывается лишним – в поле тяготения тела движутся как бы «сами по себе» по кратчайшим путям – геодезическим линиям – в искривленном пространстве-времени. При этом поле тяготения и есть по существу искривленное физическое пространство, создаваемое массами вещества. В математическом смысле искривленность – это то, чем данное пространство отличается от хорошо нами представляемого Евклидова пространства.

Для количественного описания движения сформировались представления о пространстве и времени, которые за длительный период развития естествознания претерпели существенные изменения.

В физике движение рассматривается в общем виде как изменение состояния физической системы, и для описания состояния вводится набор измеряемых параметров, к которым со времен Декарта относятся пространственно-временные координаты, или точки пространственно-временного континуума, означающего непрерывное множество. В физике используются и другие параметры состояния систем: импульс, энергия, температура, спин и т. п.

Так что же такое время? Самый простой ответ таков: время – это то, что показывают часы. Принцип работы часов может быть основан на многих физических явлениях и процессах. Наиболее удобны периодические процессы, длительно повторяющиеся с высокой степенью точности, например вращение Земли вокруг своей оси, электромагнитное излучение возбужденных атомов и т. п. Для измерения времени могут быть использованы и непериодические процессы, происходящие по известному временному закону, например, радиоактивный распад атомов или свободное падение тел в поле тяготения. Многие крупные достижения в естествознании связаны с изображением и конструированием более точных часов.

В более строгом определении время выражает порядок смены физических состояний и является объективной характеристикой любого физического процесса или явления: оно универсально. Говорить о времени безотносительно к изменениям в каких-либо реальных телах или системах – с физической точки зрения бессмысленно.

Ньютон различал абсолютное и относительное время. В своих фундаментальных «Математических началах натуральной философии» он писал:

«Абсолютное, истинное математическое время само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью.

Относительное, кажущееся или обыденное время есть или точная, или изменчивая постигаемая чувствами внешняя, совершаемая при посредстве какого-либо движения, мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как то: час, день, месяц, год...

Течение абсолютного времени изменяться не может. Длительность или продолжительность существования вещей одна и та же, быстры ли движения (по которым измеряется время), медленны ли, или их совсем нет... Время и пространство составляют как бы вместилища самих себя и всего существующего».

Аналогичные соображения Ньютон высказывал и в отношении пространства. В процессе развития физики с появлением специальной теории относительности возникло утверждение: абсолютное время не имеет физического смысла, оно – лишь идеальное математическое представление, ибо в природе нет такого реального физического процесса, пригодного для измерения абсолютного времени.

Во-первых, течение времени зависит от скорости движения системы отсчета. При достаточно большой скорости, близкой к скорости света, время замедляется, т. е. возникает релятивистское замедление времени. Во-вторых, поле тяготения приводит к гравитационному замедлению времени. Можно говорить только о локальном времени в некоторой системе отсчета. В этой связи время не есть сущность, не зависящая от материи. Оно течет с различной скоростью в различных физических условиях. Время всегда относительно.

Важная особенность времени выражена в постулате времени; одинаковые во всех отношениях явления происходят за одинаковое время. В частности, длительности повторяющихся периодов хороших часов при неизменных условиях совершенно одинаковы. Хотя этот постулат кажется естественным и очевидным, его истинность относительна, так как его нельзя проверить на опыте даже с помощью самых совершенных, но реальных часов, поскольку: 1) они все же не идеальны и характеризуются своей мерой точности; 2) нет абсолютной уверенности в возможности создания совершенно одинаковых условий в природе в разное время. Вместе с тем длительная практика естественно-научных исследований позволяет нам не сомневаться в справедливости данного постулата в пределах определенной точности, которая может быть сколь угодно высокой.

Концепция пространства, как и концепция времени, прошла длительный путь становления и развития. Первое представление о пространстве возникло из очевидного существования в природе и в первую очередь в микромире твердых физических тел, занимающих определенный объем. Из такого представления вытекало определение: пространство выражает порядок сосуществования физических тел. Первая законченная теория пространства – геометрия Евклида. Она была создана примерно 2000 лет назад и до сих пор считается образцом научной теории. Геометрия Евклида оперирует идеальными математическими объектами, которые существуют как бы вне времени, и в данном смысле пространство в этой геометрии – идеальное математическое пространство. Вплоть до середины XIX в., когда были созданы неевклидовы геометрии, никто из естествоиспытателей не сомневался в тождественности реального физического и Евклидова пространств.

По аналогии с абсолютным временем Ньютон ввел понятие абсолютного пространства, которое может быть совершенно пустым, существуя независимо от наличия в нем физических тел, и являясь как бы мировой сферой, где разыгрываются физические процессы. Свойства подобного пространства определяются Евклидовой геометрией. Такое представление о пространстве до сих пор лежит в основе многих экспериментов, позволивших сделать крупные открытия.

Конечно, пустое пространство – идеальное пространство. Реальный окружающий нас мир полон материальных вещей даже в безвоздушном космическом пространстве – его заполняют звезды, метеоритные образования, элементарные частицы и, как полагают астрономы, невидимая, скрытая материя. Идеальность пустого пространства подтверждает и относительный характер механического движения тел. Для описания движения тела нужно указать другое в качестве тела отсчета – рассмотрение одного единственного тела в пустом пространстве бессмысленно.

Специальная теория относительности объединила пространство и время в единый континуум пространство-время. Основанием для такого объединения послужили и постулат о предельной скорости передачи взаимодействий материальных тел – скорости света, равной в вакууме примерно 300 000 км/с, и принцип относительности. Из данной теории следует относительность одновременности двух событий, происшедших в разных точках пространства, а также относительность измерений длин и интервалов времени, произведенных в разных системах отсчета, движущихся относительно друг друга. Все это означает, что для реального мира пространство и время имеют не абсолютный, а относительный характер.

3.5. Принцип относительности и инвариантность

Важную роль в развитии естествознания сыграл принцип относительности, сформулированный впервые Галилеем для механического движения. Механическое движение относительно, и его характер зависит от системы отсчета. Та система, по отношению к которой выполняется первый закон Ньютона, называется инерциальной системой отсчета. Это такая система, которая либо покоится, либо движется прямолинейно и равномерно относительно какой-то другой неподвижной или движущейся прямолинейно и с постоянной скоростью системы. Первый закон Ньютона утверждает существование инерциальных систем отсчета.

Опытным путем установлено, что с большой степенью точности инерциальной можно считать гелиоцентрическую (звездную) систему отсчета, начало координат которой находится в центре Солнца, а оси проведены в направлении определенных звезд. Система отсчета, связанная с Землей, строго говоря, неинерциальная, однако эффекты, обусловленные ее неинерциальностью, связанные с вращением вокруг собственной оси и обращением вокруг Солнца, при решении многих задач пренебрежимо малы, и в этих случаях ее можно считать инерциальной.

Если системы отсчета движутся относительно друг друга равномерно и прямолинейно и в одной из них справедливы законы динамики Ньютона, то эти системы инерциальные.

Установлено, что во всех инерциальных системах отсчета законы классической динамики имеют одинаковую форму; в этом сущность механического принципа относительностипринципа относительности Галилея. Он означает, что уравнения динамики при переходе от одной инерциальной системы к другой не изменяются, т. е. инвариантны по отношению к преобразованию координат. Галилей обратил внимание на то, что никакими механическими опытами, проведенными в данной инерциальной системе отсчета, нельзя установить, покоится она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, движущегося равномерно и прямолинейно, мы, не выглянув в окно, не можем определить, движется ли корабль.

А. Пуанкаре распространил принцип относительности на все электромагнитные процессы, а А. Эйнштейн использовал его для специальной теории относительности.

Современная формулировка принципа относительности такова:

все инерциальные системы отсчета равноправны между собой (неотличимы друг от друга) в отношении протекания физических процессов или, другими словами, физические процессы не зависят от равномерного и прямолинейного движения системы отсчета.

Вместе с принципом относительности в физике утвердились понятия инвариантности, инвариантов и симметрии, а также связь их с законом сохранения и вообще с законами природы.

Инвариантность означает неизменность физических величин или свойств природных объектов при переходе от одной системы отсчета к другой. В специальной теории относительности постулируется инвариантность законов природы и скорости света в вакууме. Они остаются неизменными относительно преобразований Лоренца, предложенных им в 1904 г., еще до появления теории относительности, как преобразования, относительно которых уравнения Максвелла инвариантны.

Специальная теория относительности, принципы которой сформулировал в 1905г. А. Эйнштейн, представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно. Специальная теория часто называется релятивистской теорией, а специфические явления, описываемые ею, – релятивистским эффектом.

В основе специальной теории относительности лежат постулаты Эйнштейна:

1) принцип относительности: никакие опыты (механические, электрические, оптические), проведенные в данной инерциальной системе отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы к другой;

2) принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источников света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Первый постулат, являясь обобщением механического принципа относительности Галилея на любые физические процессы, утверждает таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно данному постулату все инерциальные системы отсчета совершенно равноправны, т. е. явления механические, электродинамические, оптические и другие во всех инерциальных системах отсчета протекают одинаково.

Согласно второму постулату постоянство скорости света в вакууме – фундаментальное свойство природы. Специальная теория относительности потребовала отказа от привычных классических представлений о пространстве и времени, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время.

Из специальной теории относительности следуют новые пространственно-временные представления, такие, например, как относительность длин и промежутков времени, относительность одновременности событий.

Общая теория относительности, называемая иногда теорией тяготения, – результат развития специальной теории относительности. Из нее вытекает, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени может изменяться от одной области к другой в зависимости от концентрации масс в этих областях и их движения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: