Размеров индукционной тигельной печи

Емкость тигля связана с производительностью печи, временем плавки и временем загрузки, разгрузки и вспомогательных операций следующими выражениями:

, (3.13)

, (3.14)

, (3.15)


где - емкость тигля, т;

- суточная производительность, т/сут.;

- сменная производительность, т/см;

- время плавки;

- время разливки, загрузки и вспомогательных операций;

- число смен работы печи в сутки, обычно ,

- относительное значение остаточной емкости

, (3.16)

где - номинальная емкость тигля, т.

Емкость тигля состоит из сливаемой емкости и остаточной емкости (емкости «болота»)

, т, (3.17)

, т. (3.18)

Полезный объем тигля определяется по выражению,

, м3, (3.19)

где - плотность металла или сплава при температуре разливки, т/м3.

Для определения формы тигля и соотношения между высотой загрузки и индуктора (рис. 3.3) следует задаться значениями коэффициентов , и .

Выбор значений коэффициентов , и основывается на тех­нико-экономических факторах. Для удобства ведения металлурги­ческого процесса и из условия минимизации тепловых потерь диа­метр и глубина загрузки должны быть приблизительно одинако­выми; для повышения же электрического КПД следует увеличи­вать высоту загрузки, уменьшая диаметр (пока сохраняется достаточно большое отношение радиуса садки к глубине проникно­вения тока).

Требования к толщине футеровки также противоре­чивы: с ее увеличением термический КПД печи растет, а электри­ческий падает. Кроме того, толщина футеровки должна быть до­статочной для того, чтобы ее механическая прочность обеспечила надежную эксплуатацию тигля. По соображениям механической прочности внутреннюю поверхность тигля делают не цилиндрической, а конической (рис. 3.3) с углом между образующей конуса и осью тигля в пределах ; при этом толщина стенки растет от поверхности металла к дну тигля в соответствии с ростом гидростатического давления. В условиях противоречивых требований целесообразно для выбора коэффициентов и применять экономический критерий.

Значения коэффициента должны лежать в таком диапазоне, чтобы соотношения между диаметром и высотой загрузки были приемлемы с точки зрения удобства ведения плавки. Диапазон значений ко­эффициента должен обеспечивать достаточную механическую прочность футеровки. Внутри этих диапазонов оптимальными яв­ляются значения коэффициентов и , при которых имеет место максимум полного КПД печи, равного произведению электриче­ского и термического КПД.

 
Рис. 3.3. К расчету индукционной тигельной печи: - внутренний диаметр индуктора; - средний внутренний диаметр тигля; - высота индуктора (аксиальный размер); - высота металла (загрузки) в тигле; - угол конусности стенки тигля; - толщина футеровки; - высота магнитопровода; - внутренний диаметр магнитопровода Рис. 3.4. Оптимальные значения коэффициентов геометрии тигля и в зависимости от емкости печи

В результате решения задачи оптимизации с помощью ЭВМ по­строены графики (рис. 3.4) [7], представляющие собой зависимости оптимальных значений коэффициентов и от емкости печи для черных металлов и алюминия.

Что касается коэффициента , то с возрастанием его в пределах от 0,5 до 1,5 полный КПД печи повышается, хотя и незначительно. Поэтому коэффициент следует принимать равным , рас­полагая индуктор симметрично относительно загрузки, для всех печей, кроме тех, у которых верхний торец индуктора приходится опускать ниже зеркала ванны для ослабления циркуляции металла в верхней части тигля и уменьшения высоты мениска. В последнем случае в электрическом расчете печи под величиной следует по­нимать расстояние от дна тигля до верхнего торца индуктора.

Поскольку угол конусности стенки тигля мал, полезный объем тигля можно рассчитать как объем цилиндра диаметром и высотой :

, м3. (3.20)

Заменив в (3.20) , получим выражение для объема

, м3. (3.21)

Средний внутренний диаметр тигля определяется из (3.21) по выражению

, м. (3.22)

Из графиков (рис. 3.4) определяется как функция полезной емкости тигля .

Высота загрузки определяется по выражению

, м. (3.23)

Высота внутренней полости тигля (на рис. 3.3 не указана) ориентировочно может быть определена по эмпирическому отношению [6]

. (3.24)

Высота индуктора (без учета холостых витков) определяется по выражению

, м. (3.25)

Как указывалось ранее, значение коэффициента .

Взаимное расположение индуктора и загрузки, а также индуктора и магнитопровода () определяют из конструктивных соображений. Для ориентировочной оценки можно использовать отношение . В печах средней частоты (открытых и вакуумных) обычно принимают симметричное расположение индуктора по отношению к загрузке. В печах промышленной частоты верхний уровень индуктора располагают на % ниже номинального уровня расплава.

Для выравнивания температурного поля в стенке тигля непосредственно над рабочими витками индуктора устанавливают «холостую» водоохлаждаемую катушку, не подключаемую к источнику питания.

Толщина футеровки в среднем сечении тигля определяется по выражению

, м. (3.26)

Из графика (рис. 3.4) определяется как функция полезной емкости тигля .

Ориентировочно толщина футеровки в среднем сечении тигля может быть определена по эмпирической формуле [6]

, м, (3.27)

где - полезная емкость тигля, т.

Внутренний диаметр индуктора

, м, (3.28)

где - толщина тепловой изоляции, располагаемой между футеровкой и индуктором ( мм).

Удельная поверхностная мощность определяется по выражению

, Вт/м2. (3.29)

Высота мениска определяется по выражению

,м, (3.30)

где - плотность расплава, кг/м3;

- удельное сопротивление расплава, Ом×м;

- частота источника питания, Гц.

Высота мениска () обычно не превышает 15 % полной высоты металла по оси тигля ().


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: