double arrow

Основные соотношения в трансформаторе в режиме холостого хода

Рассмотрим работу однофазного двухобмоточного трансформатора с магнитопроводом стержневого типа (рис. 1.3).

В режиме холостого хода вторичная цепь разомкнута (I2 = 0). В первичной обмотке протекает сравнительно небольшой ток I10.

Если первичная обмотка подключена к источнику синусоидального первичного напряжения u1=U1msinωt = U1 sinωt, где u1- мгновенное, U1m – амплитудное, а U1 – действующее значение первичного напряжения, ω – угловая частота. Тогда намагничвающая сила первичной обмотки (I10w1) создает в сердечнике магнитный поток также изменяющийся по синусоидальному (гармоническому) закону Ф1= Ф1msinωt, где Ф1 - мгновенное, а Ф1m – амплитудное значения потока.

(1.1)

где RМ – сопротивление магнитной цепи, по которой замыкается магнитный поток.

Рисунок 1.3 – Холостой ход однофазного трансформатора

Магнитный поток Ф1 делится на две части: главный (основной) поток Ф10, замыкающийся по магнитопроводу, и поток рассеяния Ф, замыкающийся по воздуху в пространстве вокруг первичной обмотки.

При работе трансформатора в режиме холостого хода поток рассеяния во много раз (10 …100) меньше основного потока, так как сопротивление магнитной цепи ферромагнитного магнитопровода во много раз меньше сопротивления магнитной цепи, по которой замыкается поток рассеяния. Сопротивление этой цепи определяется сопротивлением пути потока в воздухе и незначительно магнитным сопротивлением части сердечника. Следовательно можно считать что поток Ф создается током I10 и практически совпадает с ним по фазе.

В передаче мощности от первичной обмотки ко вторичной участвует только основной поток, который сцеплен с витками как первичной, так и вторичной обмоток. Поток рассеяния сцеплен с витками только первичной обмотки.

Основной магнитный поток индуцирует во вторичной обмотке ЭДС холостого хода. Значение этой э.д.с., находится на основании закона электромагнитной индукции

e20= u20 = -w2 = -w2 = -w2ωФ10m cosωt

= w2ωФ10m sin(ωt –π/2) = Е2m sin(ωt –π/2) (1.2)

Таким образом э.д.с. отстает по фазе от магнитного потока на π/2

Действующее значение э.д.с. вторичной обмотки (вторичное напряжение холостого хода)

Е20 = U20 = Е2m / = w2ωФ10m/ = w22πfФ10m / = Cw2Ф10m. (1.3)

Здесь С =

где f – частота питающей сети; Ф10m – амплитудное значение основного магнитного потока.

В первичной обмотке ЭДС индуцирует как основной поток Ф10, так и поток рассеяния Ф

Е1 = Сw1 Ф10m, Е = Сw1 Фm (1.4)

Напряжение U1, подведенное к первичной обмотке, уравновешивается этими ЭДС и падением напряжения на активном сопротивлении первичной обмотки. Пренебрегая незначительным сдвигом по фазе магнитных потоков Ф10 и Ф1Р, можно для действующих значений напряжений и ЭДС записать

(1.5)

Обмотки трансформатора выполняются медным или алюминиевым проводом достаточного сечения и, следовательно, имеют малое активное сопротивление. В свою очередь ток холостого хода I10 не более 3-10% номинального первичного тока трансформатора (тем меньше чем мощнее трансформатор).

Поэтому величина I10R1 ничтожно мала по сравнению с U1 и ей можно пренебречь. Тогда получим, что в режиме холостого хода первичное напряжение

U1 практически равно по величине (и противоположно по фазе) ЭДС Е1

U1» Е1 = Сw1 10m+ Фm) = Сw1 Ф1m (1.6)

В соответствии с (2.3) и (2.6) коэффициент трансформации определится выражением

(1.7)

где КМ – коэффициент магнитной связи между первичной и вторичной обмотками:

(1.8)

В трансформаторах с нормальным рассеянием, у которых первичная и вторичная обмотки совмещены (например, намотаны концентрично одна поверх другой), КМ» 1.

В трансформаторах с увеличенным рассеянием, у которых первичная и вторичная обмотки разнесены на разные стержни или на разные участки одного стержня, КМ < 1 (КМ = 0,9 – 0,98). При этом, в соответствии с выражением (1.7),

(1.9)

То есть наличие потоков рассеяния приводит к некоторому снижению напряжения холостого хода трансформатора, что необходимо учитывать при расчете количества витков вторичной обмотки.

Из выражений (1.3) – (1.5) видно, что ЭДС, индуктируемая в обмотке трансформатора (первичной или вторичной), и напряжение на обмотке пропорционально числу витков обмотки, магнитному потоку, сцепленному с обмоткой и частоте, преобразуемого переменного тока. Величина магнитного потока в трансформатора определяется магнитной индукцией в магнитопроводе В и площадью его сечения QС

(1.10)

где Фm и Вm – амплитудные значения магнитного потока и магнитной индукции в сердечнике.

С учетом указанных соотношений получаем

(1.11)

Магнитная индукция, достигаемая в магнитопроводе без его насыщения, определяется материалом магнитоповода. Для трансформаторной стали среднего качества принимают Bm = 1,1 -1,4 Тл.

При расчете трансформатора обычно в соответствии с мощностью трансформатора выбирают сечение сердечника трансформатора QС , а затем в соответствии с выражением (1.11) определяют требуемое число витков обмоток трансформатора.

(1.12)

Из выражения (1.11) также следует, что с увеличением частоты трансформируемого переменного тока можно соответственно уменьшить сечение сердечника и число витков обмоток. Поэтому высокочастотные трансформаторы имеют значительно меньшую массу и габариты чем низкочастотные при той же передаваемой мощности.


1.3 Работа трансформатора в режиме нагрузки


При подключении нагрузки во вторичной обмотке появляется ток I2, который создает магнитный поток Ф2, направленный встречно потоку Ф1:

. (1.13)
Основная часть этого потока Ф20 замыкается по магнитопроводу трансформатора, а часть потока замыкается в пространстве вокруг вторичной обмотки, образуя поток рассеяния вторичной обмотки Ф(рис. 1.4)

Рисунок 1.4 - Магнитные потоки трансформатора в режиме нагрузки

Магнитный поток, сцепленный с витками первичной обмотки в режиме нагрузки, определится разностью потока, созданного намагничивающей силой первичной обмотки (I1Hw1), и основной частью магнитного потока вторичной обмотки

Ф1РЕЗ = Ф1 – Ф20 (1.14)

Результирующий магнитный поток сцепленный с первичной обмоткой индуцирует в ней ЭДС самоиндукции, которая в основном уравновешивает подведенное к ней напряжение U1 (см. формулы (1.5 (1.6)). Поэтому Ф1РЕЗ остается почти неизменным при любых режимах работы трансформатора.

Ф1РЕЗ» Ф1 (1.15)

Следовательно, увеличение вторичного тока сопровождается соответствующим увеличением первичного тока

I» I2 / n (1.16)

и мощности, потребляемой трансформатором от питающей сети.

С увеличением тока нагрузки возрастают и потоки рассеяния первичной и вторичной обмотки Ф1РН и Ф.

, (1.17) где RMP1 и RMP2 – сопротивления магнитных цепей, по которым замыкаются потоки рассеяния первичной и вторичной обмоток

Магнитный поток рассеяния вторичной обмотки не сцеплен с витками первичной обмотки и, следовательно, не компенсируется соответствующим увеличением первичного тока. Следовательно результирующий магнитный поток, сцепленный со вторичной обмоткой будет уменьшаться с увеличением тока нагрузки.

Ф2РЕЗ = Ф1 –Ф20-(Ф)» Ф1 – (Ф) (1.18)

Коэффициент пропорциональности между потокосцеплением y = wФ и током в катушке определяет ее индуктивность

L = wФ/I. (1.19)

Магнитным потокам рассеяния соответствуют эквивалентные индуктивности рассеяния

(1.20)

Учитывая, что магнитный поток определяется намагничивающей силой обмотки (см. формулу (1.17)) можно записать (1.21)

В цепи синусоидального переменного тока индуктивностям рассеяния соответствуют индуктивные сопротивления

X1p = wLX2p = wL

Приводя параметры первичной обмотки ко вторичной цепи трансформатора можно определить эквивалентные активное и индуктивное сопротивление трансформатора

(1.22)

; . (1.23)

Уравнение трансформатора запишется в виде

(1.24)

Или в векторной форме

(1.25)

Векторная диаграмма напряжений трансформатора при активной нагрузке RН приведена на рис.1.5

Рисунок 1.5 - Векторная диаграмма трансформатора

Обмотки трансформатора обладают малым активным сопротивлением. Падение напряжения на активном сопротивлении при номинальном для данного трансформатора токе составляет 1…3% от напряжения холостого хода:

I2НОМRT < 0,03 U20.

Если трансформатор выполнен с нормальным рассеянием, то есть его первичная и вторичная обмотка совмещены, то магнитный поток, создаваемый намагничивающей силой каждой из обмоток, практически полностью сцеплен с обеими обмотками, а потоки рассеяния первичной и вторичной обмотки практически полностью компенсируют друг друга (рис.1.6). Магнитные потоки рассеяния и эквивалентные им индуктивности рассеяния при этом близки к нулю (потоки рассеяния первичной и вторичной обмотки направлены встречно и практически полностью компенсируют друг друга).

L» 0, L» 0, XT» 0.

Рисунок 1.6 - Магнитные потоки в трансформаторе с совмещенными обмотками

Такой трансформатор в диапазоне рабочих токов при активной нагрузке имеет пологопадающую (близкую к жесткой) внешнюю характеристику, сдвиг фаз φ между напряжением холостого хода и током нагрузки близок к нулю, а коэффициент мощности cosφ, близок к единице.

Трансформаторы, у которых первичная и вторичная обмотки разнесены, то есть размещены на разных стержнях или на разных участках одного стержня, обладают повышенной индуктивностью рассеяния и имеют падающие или крутопадающие внешние характеристики и крутизну наклона характеристики можно регулировать изменяя степень разнесения обмоток трансформатора. Сдвиг фаз φ между напряжением холостого хода и током нагрузки может быть значительным, а коэффициент мощности cosφ, значительно меньшим единицы.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: