Систему проводников очень большой электроемкости вы можете обнаружить в любом радиоприемнике или купить в магазине. Называется она конденсатором. Сейчас вы узнаете, как устроены подобные системы и от чего зависит их электроемкость.
Конденсатор. Большой электроемкостью обладают системы из двух проводников, называемые конденсаторами. Конденсатор представляет собой два проводника, разделенные слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники в этом случае называются обкладками конденсатора.
Простейший плоский конденсатор состоит из двух одинаковых параллельных пластин, находящихся на малом расстоянии друг от друга (рис. 1). Если заряды пластин одинаковы по модулю и противоположны по знаку, то силовые линии электрического поля начинаются на положительно заряженной обкладке конденсатора и оканчиваются на отрицательно заряженной. Поэтому почти все электрическое поле сосредоточено внутри конденсатора.
У сферического конденсатора, состоящего из двух концентрических сфер, все поле сосредоточено между ними.
Для зарядки конденсатора нужно присоединить его обкладки к полюсам источника напряжения, например к полюсам батареи аккумуляторов. Можно также соединить одну обкладку с полюсом батареи, у которой другой полюс заземлен, а вторую обкладку конденсатора заземлить. Тогда на заземленной обкладке останется заряд, противоположный по знаку и равный по модулю заряду другой обкладки. Такой же по модулю заряд уйдет в землю.
Под зарядом конденсатора понимают абсолютное значение заряда одной из обкладок.
Электроемкость конденсатора определяется формулой.
Электрические поля окружающих тел почти не проникают внутрь конденсатора и не влияют.на разность потенциалов между его обкладками. Поэтому электроемкость конденсатора практически не зависит от наличия вблизи него каких-либо других тел.
Первый конденсатор, названный лейденской банкой, был создан в середине XVIII в. Было обнаружено, что гвоздь, вставленный в стеклянную банку с ртутью, накапливает большой электрический заряд. В таком конденсаторе ртуть служила одной обкладкой, а ладони экспериментатора, держащего банку,— другой. Впоследствии обе обкладки стали делать из тонкой латуни или станиоля.
Электроемкость плоского конденсатора. Геометрия плоского конденсатора полностью определяется площадью S его пластин и расстоянием d между пластинами. От этих величин и должна зависеть емкость плоского конденсатора. Чем больше площадь пластин, тем больший заряд можно на них накопить: q~S. С другой стороны, напряжение между пластинами согласно формуле пропорционально расстоянию между ними. Поэтому емкость
Кроме того, напряжение, так же как и напряженность поля, уменьшается в среде в εраз:
Следовательно, если- между пластинами находится диэлектрик, то емкость
(1)
Проверим на опыте зависимость (1), полученную нами из элементарных соображений. Для этого возьмем конденсатор, у которого расстояние между пластинами можно изменять, и электрометр с заземленным корпусом (рис.1). Соединим корпус и стержень электрометра проводниками с пластинами конденсатора и зарядим конденсатор. Для этого нужно коснуться наэлектризованной палочкой пластины конденсатора, соединенной со стержнем. Электрометр покажет разность потенциалов между пластинами.
Раздвигая пластины, мы обнаружим увеличение разности потенциалов.
Согласно определению электроемкости – это указывает на ее уменьшение. В соответствии с зависимостью (1) электроемкость действительно должна уменьшаться с увеличением расстояния между пластинами.
Вставив между обкладками конденсатора пластину из диэлектрика, например из органического стекла, мы обнаружим уменьшение разности потенциалов. Следовательно, электроемкость плоского конденсатора в этом случае увеличивается.
Расстояние между пластинами d может быть очень малым, а площадь S и диэлектрическая проницаемость — достаточно большими. Поэтому при небольших размерах конденсатор может иметь большую электроемкость. Впрочем, плоский конденсатор электроемкостью в 1 Ф должен был бы иметь площадь пластин S = 100 км2 при расстоянии между пластинами d=1 мм.
Измерение диэлектрической проницаемости. Зависимость электроемкости конденсатора от электрических свойств вещества между его обкладками используется для измерения диэлектрической проницаемости вещества. Для этого нужно экспериментально определить отношение электроемкости (С) конденсатора с диэлектрической пластиной между обкладками и без нее (Со). Как следует из выражения (1), диэлектрическая проницаемость
Различные типы конденсаторов. В зависимости от назначения конденсаторы имеют различное устройство. Обычный технический бумажный конденсатор состоит из двух полосок алюминиевой фольги, изолированных друг от друга и от металлического корпуса бумажными лентами, пропитанными парафином. Полоски и ленты туго свернуты в пикет небольшого размера.
В радиотехнике широко применяют конденсаторы переменной электроемкости (рис.2). Такой конденсатор состоит из двух систем металлических пластин, которые при вращении рукоятки могут входить одна в другую. При этом меняются площади перекрывающихся частей пластин и, следовательно, их электроемкость. Диэлектриком в таких конденсаторах служит воздух.
Значительного увеличения электроемкости за счет уменьшения расстояния между обкладками достигают в так называемых электролитических конденсаторах (рис.3). Диэлектриком в них служит очень тонкая пленка оксидов, покрывающих одну из обкладок (полосу фольги). Второй обкладкой служит бумага, пропитанная раствором специального вещества (электролита).
Конденсаторы позволяют накапливать электрический заряд. Электроемкость плоского конденсатора пропорциональна произведению площади пластин на диэлектрическую проницаемость среды между ними и обратно пропорциональна расстоянию между пластинами.
Рис.1 Рис.2
Рис.3 Рис.4