Тепловое расширение кристаллической решетки

Причины теплового расширения можно понять, если учесть влияние ангармонических членов в выражении для потенциальной энергии взаимодействия пар атомов при температуре Т (рис. 3.5):

Рис. 3.5. Зависимость потенциальной энергии взаимодействия частиц от расстояния между ними

Введем следующие обозначения: – смещение атома из его положения равновесия при 0 К,

и учтем, что . Тогда выражение для потенциальной энергии примет вид

(3.37)

Член с описывает асимметрию взаимного отталкивания атомов, член с – сглаживание колебаний при больших амплитудах.

При абсолютном нуле атомы располагаются на расстояниях , что соответствует минимуму энергии взаимодействия (у дна потенциальной ямы). С повышением температуры атомы начинают колебаться около положения равновесия. Для упрощения предположим, что атом 1 закреплен неподвижно и колеблется лишь атом 2.

Если бы атом 2 совершал чисто гармонические колебания, то сила, которая возникает при отклонении его от положения равновесия на расстояние x, была бы строго пропорциональна этому отклонению и направлена к положению равновесия. Потенциальная энергия атома описывалась бы при этом квадратичной параболой (штриховая кривая на рис.3.5). Эта парабола симметрична относительно прямой, которая проходит через . Поэтому отклонения были бы одинаковыми по величине, и центр смещения совпадал бы с положением равновесия, то есть с точкой .

В действительности колебания не являются гармоническими, что связано с несимметричным характером потенциальной энергии (сплошная кривая на рис.3.5). Это обстоятельство приводит к тому, что отклонение атома 2 вправо и влево оказываются неодинаковыми: вправо частица отклоняется сильнее, чем влево. В результате этого среднее положение частицы 2 уже не совпадает с положением равновесия , а смещается вправо.

Среднее смещение можно вычислить, если воспользоваться функцией распределения Больцмана[6], с помощью которой усреднение возможных значений какой-нибудь физической величины осуществляется в соответствии с их термодинамическими вероятностями

(3.38)

Полагая смещение таким, что ангармонические члены в выражении для энергии можно считать малыми по сравнению с , подынтегральные функции раскладываем в ряд:

, (3.39)

, (3.40)

и поэтому

(3.41)

Коэффициент теплового расширения (КТР) равняется относительному изменению при нагревании тела на 1 К

. (3.42)

Значения КТР для некоторых металлов приводятся в таблице 3.3.

Определим зависимость КТР от температуры. Средняя величина полной энергии атома определяется среднеквадратичным смещением: . Среднее во времени значение силы, которая действует на атом, должно равняться нулю: . Следовательно, . Подставляя полученное значение в (3.42), получаем

(3.43)

где — теплоемкость, отнесенная к одному атому.

Таблица 3.3. Коэффициенты линейного теплового расширения в области комнатной температуры

Вещество 106, град-1 Вещество 106, град-1
Li Cs Cu Ag Au Al   Pb Fe Ni Cr Mo W 11,7 12,5 7,5 5,2 4,6

Из (3.43) следует, что КТР твердых тел пропорционален теплоемкости и с температурой он должен изменяться так же, как изменяется теплоемкость (рис.3.6). Из физики твердого тела известно, что коэффициент ангармоничности . Подставляя это выражение в (3.43), получаем

(3.44)

Следовательно, КТР обратно пропорционален коэффициенту жесткости связи Поэтому он низкий для кристаллов с сильными, например, ковалентными связями ( град-1), и высокий для кристаллов со слабыми, в частности, молекулярными связями (до град-1).

Рис. 3.6. Зависимость коэффициента линейного расширения от температуры

Зависимость КТР от позволяет целенаправленно изменять его путем изменения жесткости связи. Этим пользуются, например, для получения стекол с различными КТР путем введения в силикатную основу окислов металлов. За счет взрыхления структуры стекла можно добиться изменения КТР на два порядка. Для металлов изменения КТР в таких же границах можно получить, сплавляя их друг с другом.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: