Студопедия
Поделиться в соц. сетях:


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Теорема Остроградского-Гаусса




Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Введем новую физическую величину, характеризующую электрическое поле – поток вектора напряженности электрического поля. Понятие потока вектора аналогично понятию потока вектора скорости при течении несжимаемой жидкости. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка , в пределах которой напряженность , т. е. электростатическое поле однородно. Произведение модуля вектора на площадь и на косинус угла между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку (рис. 10.7):

, (10.8)

где - проекция поля нанаправление нормали .

Рассмотрим теперь некоторую произвольную замкнутую поверхность . В случае замкнутой поверхности всегда выбирается внешняя нормаль к поверхности, т. е. нормаль, направленная наружу области.

Если разбить эту поверхность на малые площадки, определить элементарные потоки поля через эти площадки, а затем их просуммировать, то в результате мы получим поток вектора напряженности через замкнутую поверхность (рис. 10.8):

. (10.9)

Рис. 10.7
Рис. 10.8

Теорема Остроградского-Гаусса утверждает: поток вектора напряженности электростатического поля через произвольную замкнутую поверхность прямо пропорционален алгебраической сумме свободных зарядов, расположенных внутри этой поверхности:

, (10.10)

где - алгебраическая сумма свободных зарядов, находящихся внутри поверхности , - объемная плотность свободных зарядов, занимающих объем .

Если ввести вектор электрического смещения:

, (10.11)

то теорему Остроградского-Гаусса можно выразить через поток вектора через замкнутую поверхность :

. (10.12)

Из теоремы Остроградского-Гаусса (10.10), (10.12) следует, что поток не зависит от формы замкнутой поверхности (сфера, цилиндр, куб и т.п.), а определяется только суммарным зарядом внутри этой поверхности.

Используя теорему Остроградского-Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией.

Рассмотрим задачу о вычисленииполя тонкостенного пологооднородно заряженного длинного цилиндра радиуса (тонкой бесконечной заряженной нити). Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Выберем замкнутую поверхность в виде цилиндра произвольного радиуса и длины , закрытого с обоих торцов (рис. 10.9).




Для поток вектора напряженности будет проходить через боковую поверхность цилиндра, площадь которой равна , так как поток через оба основания равен нулю.

Используя теорему Остроградского-Гаусса в форме (10.10), получим:

, (10.13)

где - заряд на единицу длины цилиндра (линейная плотность заряда).

Отсюда напряженность поля:

. (10.14)

Этот результат не зависит от радиуса R заряженного цилиндра, поэтому он применим и к полю тонкой бесконечной однородно заряженной нити.

Рис. 10.9

Для расчета напряженности поля внутри заряженного цилиндра выберем замкнутый цилиндр с < . Поскольку внутри этого цилиндра заряд отсутствует, то в соответствии с (10.13), поток и поле равны нулю.

Аналогичным образом можно применять теорему Остроградского-Гаусса для расчета электрического поля и в других задачах, когда распределение зарядов обладает какой-либо симметрией, например, относительно центра, плоскости или оси. В каждом из таких случаев выбирают форму замкнутой гауссовой поверхности, исходя из симметрии задачи. Например, в случае центральной симметрии гауссову поверхность удобно выбирать в виде сферы с центром в точке симметрии. При осевой симметрии замкнутую поверхность выбирают в виде цилиндра, замкнутого с обоих торцов (как в рассмотренном выше примере).

Рассмотрим еще один примерсимметричного распределения зарядов – расчет поля равномерно заряженной плоскости с поверхностной плотностью заряда (заряд, приходящийся на единицу площади) (рис. 10.10).



Рис. 10.10

В этом случае гауссову поверхность S целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости везде направлено по нормали к плоскости.

Применение теоремы Гаусса дает:

, . (10.15)

Используя теорему Остроградского-Гаусса и принцип суперпозиции, можно рассчитать напряженность поля, создаваемого двумя бесконечными параллельными разноименно заряженными плоскостями (поле внутри плоского конденсатора)

, (10.16)

и напряженность поля равномерно заряженной сферы радиуса на расстоянии :

(10.17)





Дата добавления: 2015-03-27; просмотров: 20941; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 8396 - | 6421 - или читать все...

Читайте также:

  1. Анализ однородных открытых СеМО. Теорема Джексона
  2. Вариационные принципы механики. Вариационная теорема
  3. Верны ли определения? А) Если теорема верна, то заключение теоремы называют необходимым условием для
  4. Верны ли определения? А) Если теорема верна, то условие теоремы называют достаточным для заключения
  5. Виет теоремасы
  6. Внешние эффекты и теорема Коузак
  7. Вопрос Теорема Ферма, Ролля, Лангранжа, Коши
  8. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка. Изоклины. Задача Коши. Теорема существования и единственности задачи Коши
  9. Закон больших чисел и центральная предельная теорема
  10. Закон больших чисел. Неравенство Чебышева. Теорема Бернулли. Теорема Чебышева
  11. Замечание. Теорема Эйлера имеет место и для графов, не являющихся простыми
  12. Интегральная теорема Лапласа позволяет вычислить


 

54.161.77.30 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.003 сек.