double arrow

Модуль 1

1

Готовим к ЕГЭ по математике и физике.

Тел. 495-345-20-61 в Москве.

ПРОГРАММА КУРСА «ЭЛЕМЕНТАРНАЯ МАТЕМАТИКА»

раздела «планиметрия»

Направление «Педагогическое образование», профиль подготовки «Математика», очная форма обучения, первый курс, второй семестр, 2015/16 уч. год, 36 часов практических занятий, 3 контрольные работы, зачет.

Преподаватель МФТИ, доцент, к.ф-м.н. Султанов Алексей Эдвартович.

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ И ЕЕ РАЗДЕЛЫ

Модуль 1.Треугольники. Метрические соотношения между элементами треугольника. Медианы, биссектрисы и высоты треугольника. Вписанный и описанный треугольник. Равнобедренный и прямоугольный треугольник.

Модуль 2. Четырехугольники. Трапеция. Дополнительные построения, связанные с трапецией. Вписанная и описанная трапеция. Параллелограмм. Признаки параллелограмма. Ромб. Прямоугольник. Квадрат.

Модуль 3. Окружность и круг. Взаиморасположение окружностей. Касательные и секущие. Углы, связанные с окружностью. Длина дуги окружности. Площадь круга, сегмента и сектора. Многоугольники. Правильные многоугольники.

УЧЕБНО-МЕТОДИЧЕСКОЕ И




ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

ЛИТЕРАТУРА

1. Л.С. Атанасян. Геометрия 7 – 9. М.: Просвещение, 1998.

2. Л.С. Атанасян, Н.С. Денисова, Е.В. Силаев. Курс элементарной геометрии.
Часть 1. Планиметрия. М.: 1992.

3. И.Ф. Шарыгин. Решение задач 10. М.: Просвещение, 1994.

4. В.В. Прасолов. Задачи по планиметрии. Часть 1. М.: Наука, 1991.

5. П.С. Моденов. Задачи по геометрии. М.: Наука, 1979.

6. З.А. Скопец. Геометрические миниатюры. М.: Просвещение, 1990.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ И ПЛАН ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

КАЛЕНДАРНО-ТЕМАТИЧЕСКИЙ ПЛАН ОСВОЕНИЯ ДИСЦИПЛИНЫ

Тема Общая трудоемкость Самостоятельная работа Всего аудиторных часов Практические и семинарские занятия часов
Модуль 1.
Модуль 2.
Модуль 3.
Итого за семестр(часов) (2 зач. ед.)

ПЛАН ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Модуль 1.

ЗАНЯТИЯ 1, 2. Медианы и биссектрисы и высоты треугольника.

В классе:

1. Медианы треугольника равны 3, 4, 5. Найти площадь этого треугольника.
Ответ: 8.

2. Определить площадь треугольника, если две его стороны равны 1 и , а медиана третьей стороны равна 2. Ответ: .

3. Основание треугольника равно 14. Медианы, проведенные к его боковым сторонам равны и . Найти боковые стороны этого треугольника.
Ответ: и .

4. Дан треугольник со сторонами 4, 8, 9. Найти длину биссектрисы, проведенной к его большей стороне. Ответ .

5. В треугольнике ABC проведена биссектриса BE, которую центр O вписанной окружности делит в отношении BO:OE=2:1. Найти AB, если AC=7 и BC=8.
Ответ: 6.



6. Дан треугольник АВС. Известно, что АВ=4, АС=2 и ВС=3. Биссектриса угла ВАС пересекает сторону ВС в точке К. Прямая, проходящая через точку В параллельно АС, пересекает продолжение биссектрисы АК в точке М. Найти КМ. Ответ: .

7. В треугольнике ABC со сторонами AB=12, AC=7 и BC=6 опущены высоты AD и BE. Найти отношение радиусов окружностей, вписанных в треугольники ABC и CDE. Ответ: 84:59.

8. Наибольшая сторона тупоугольного треугольника равна 3, а высоты, опущенные из вершин его острых углов равны и . Найти две оставшиеся стороны этого треугольника.
Ответ: 1 и .

9. В треугольнике ABC проведены биссектриса CE и высота BD. Найти отношение площадей треугольников ABC и CDE, если AB:BC:AC=3:7:5. Ответ: 24:13.

10. Точки M и N делят стороны треугольника ABC в отношении AM:MC=3:1 и CN:NB=2:3. Прямые AN и BM пересекаются в точке P. Найти отношение площадей треугольников ABP и ABN. Ответ: 5:6.

Дома:

1. Основание треугольника равно 26. Медианы его боковых сторон равны 30 и 39. Найти площадь этого треугольника. Ответ: 720.

2. В треугольнике ABC медианы AD и BE пересекаются под прямым углом. Найти AB, если AC=3 и BC=4. Ответ: .

3. Одна из сторон треугольника равна 16, а опущенная на нее медиана равна 9. Найти две оставшиеся стороны этого треугольника, если сумма их длин равна 24. Ответ: 11 и 13.

4. Определить площадь треугольника, если две его стороны равны 35 и 14, а биссектриса угла между ними равна 12. Ответ: 235,2.

5. В треугольнике АВС проведены биссектрисы CF и AD. Найти отношение площадей треугольников АВС и AFD, если АВ:АС:ВС=21:28:20. Ответ: 4.



6. Дан треугольник ABC со сторонами , , . Найти расстояние от точки B до точки пересечения высот треугольника ABC. Ответ: 9.

7. В треугольнике ABC проведены высоты AD и CE. Найти AB, если BE=18, BC=30, AD=20. Ответ: 25.

8. В остроугольном треугольнике ABC длины медиан BM, CN и высоты AH равны 4, 5 и 6 соответственно. Найти площадь этого треугольника. Ответ: .

9. На сторонах AC и BC треугольника ABC взяты точки D и E, так что AD:DC=3:2 и BE:EC=3:4. Прямые AE и BD пересекаются в точке O. Найти отношение BO:OD. Ответ: 5:4.

10. Найти косинус наибольшего угла треугольника, если синусы двух других его углов равны и . Ответ: .

11. Дан треугольник ABC, у которого , , . Найти AC. Ответ: .

ЗАНЯТИЯ 3, 4. Вписанный и описанный треугольник.

В классе:

1. Дан треугольник со сторонами 13, 14, 15. Найти радиусы описанной, вписанной и вневписанных окружностей. Ответ: , 4, , 12, 14.

2. Длины сторон треугольника пропорциональны числам 4, 13, 15, а радиус описанной около него окружности равен 65. Найти площадь этого треугольника. Ответ: 1536.

3. Треугольник ABC вписан в окружность радиуса R. Точка D лежит на дуге BC, а хорды AD и BC пересекаются в точке M. Найти BC, если ÐBMD=1200, AB=R, BM:MC=2:3. Ответ: .

4. Около треугольника АВС описана окружность. Медиана AD продолжена до пересечения с этой окружностью в точке Е. Известно, что АВ+AD=DE, ÐBAD=600, АЕ=6. Найти площадь треугольника АВС.

5. На сторонах AB и BC треугольника ABC взяты точки D и E. Точки A, C, D, E лежат на окружности единичного радиуса. Известно, что ÐABC=300, AC= , BE:EC=2:1. Найти BE. Ответ: 2.

6. Найти площадь треугольника, вписанного в окружность, если расстояния от концов его стороны равной 20 до касательной, проведенной через противоположную вершину, равны 25 и 16. Ответ 200.

7. На стороне AB треугольника ABC как на диаметре построена окружность, пересекающая стороны AC и BC в точках D и E соответственно. Прямая DE делит площадь треугольника ABC пополам и образует с прямой AB угол 150. Найти углы треугольника ABC. Ответ: 450, 600, 750.

8. Через центр O окружности, описанной около треугольника ABC, проведены прямые перпендикулярно сторонам AC и BC. Эти прямые пересекают высоту CH или ее продолжение в точках P и Q. Найти радиус описанной окружности, если CP=p, CQ=q. Ответ: .

9. В треугольнике АВС с периметром 2р острый угол ВАС равен α. Окружность с центром в точке О касается стороны ВС и продолжения сторон АВ и АС в точках К и L. Точка D лежит внутри отрезка АК и AD=а. Найти площадь треугольника DOK. Ответ: .

10. К окружности, вписанной в треугольник с периметром 18, проведена касательная, параллельная основанию треугольника. Отрезок касательной, заключенный между боковыми сторонами треугольника, равен 2. Найти основание треугольника. Ответ: 3 или 6.

11. В треугольнике ABC с площадью 13 из центра O вписанной окружности на сторону AC опущен перпендикуляр OF. Найти FC, если AF=2, а радиус вписанной в треугольник AOF окружности равен . Ответ: .

Дома:

1. Площадь треугольника равна 90, радиус описанной окружности равен , а радиус вписанной окружности равен . Найти длины сторон этого треугольника, если одна из них равна 17. Ответ 12 и 25.

2. В треугольнике PQR угол QRP равен 600. Найти расстояние между точками касания со стороной QR окружности радиуса 2, вписанной в треугольник, и окружности радиуса 3, касающейся продолжений сторон PQ и PR. Ответ: .

3. Окружность, построенная на стороне AC треугольника ABC как на диаметре, проходит через середину стороны BC и пересекает сторону AB в точке D, такой что AD:DB=1:2. Найти площадь треугольника ABC, если AC=1. Ответ: .

4. В треугольнике АВС известно, что AC=b и ÐАВС=α. Найти радиус окружности, проходящей через центр вписанного в треугольник АВС круга и вершины А и С. Ответ: .

5. Через вершины А и В треугольника АВС проходит окружность радиуса r, пересекающая сторону ВС в точке D. Найти радиус окружности, проходящей через точки А, С, D, если АВ=с и АС=b. Ответ: .

6. Из вершины тупого угла A треугольника ABC опущена высота AD. Из точки D радиусом AD описана окружность, пересекающая стороны AB и AC в точках M и N соответственно. Найти AC, если AB=c, AM=m, AN=n. Ответ: .

7. В треугольнике АВС с периметром 2р сторона АС равна а, острый угол АВС равен α. Вписанная в треугольник АВС окружность с центром О касается стороны ВС в точке К. Найти площадь треугольника ВОК. Ответ: .

8. В треугольник ABC со сторонами AB=4, AC=3 и BC=2 вписана окружность, касающаяся сторон AB и AC в точках M и N соответственно. Найти площадь треугольника AMN.
Ответ: .

9. В треугольнике АВС проведена медиана CD. Окружности, вписанные в треугольники ACD и BCD, касаются отрезка CD в точках М и N. Найти MN, если АС-ВС=2. Ответ: 1.

10. В треугольник вписана окружность радиуса 2. Одна из сторон треугольника делится точкой касания на отрезки 2 и 7. Найти радиус окружности, описанной около этого треугольника. Ответ: 5,3.

11. Окружность, вписанная в треугольник, точкой касания делит одну из сторон на отрезки 3 и 4, а противолежащий этой стороне угол равен 1200. Найти площадь треугольника. Ответ: .

12. Радиус вписанной в треугольник АВС окружности равен , угол ВАС равен 600, а радиус окружности, касающейся стороны ВС и продолжений сторон АВ и АС равен . Найти углы АВС и АСВ. Ответ: 300 и 900.

ЗАНЯТИЕ 5. Равнобедренный и равносторонний треугольник.

В классе:

1. Основание равнобедренного треугольника равно , а медиана его боковой стороны равна 5. Найти боковую сторону этого треугольника. Ответ: 6.

2. Биссектриса AD равнобедренного треугольника ABC с основанием AC делит его на два треугольника ABD и ACD, площади которых равны 4 и 2 соответственно. Найти стороны треугольника ABC. Ответ: и .

3. Найти углы при вершине и основании равнобедренного треугольника, у которого точка пересечения высот делит пополам высоту, проведенную к основанию. Ответ: и .

4. На боковой стороне BC равнобедренного треугольника ABC как на диаметре построена окружность, пересекающая основание в точке D. Найти расстояние от вершины A до центра этой окружности, если AD= , ÐABC=1200. Ответ: .

5. В равнобедренный треугольник ABC с основанием AC вписана окружность радиуса 3, которая касается стороны BC в точке D. Найти AD, если BD=4.
Ответ: .

6. Радиус окружности, описанной около равностороннего треугольника равен 1. Найти площадь этого треугольника. Ответ: .

Дома:

1. Найти основание равнобедренного треугольника, если косинус угла при вершине равен , а площадь равна 1. Ответ: .

2. В равнобедренном треугольнике высота, опущенная на основание равна 5, а высота, опущенная на боковую сторону равна 6. Найти площадь этого треугольника. Ответ: 18,75.

3. На основании AC равнобедренного треугольника ABC как на диаметре построена окружность, пересекающая сторону BC в точке D. Найти площадь треугольника ABC, если BD:DC=3:2, AD= . Ответ: 18.

4. Боковая сторона равнобедренного треугольника равна 10, а его основание равно 12. Найти расстояние между точками касания вписанной в этот треугольник окружности с его боковыми сторонами. Ответ: 4,8.

5. В равнобедренном треугольнике ABC с основанием AB центр O вписанной окружности делит высоту CD на отрезки CO=13 и OD=5. Найти длины сторон этого треугольника.
Ответ: 15 и 19,5.

ЗАНЯТИЕ 6. Прямоугольный треугольник.

В классе:

1. В прямоугольном треугольнике ABC с прямым углом при вершине C выразить биссектрису, проведенную к катету BC через угол β при вершине B и гипотенузу AB=c. Ответ: .

2. Один из катетов прямоугольного треугольника равен 15, а проекция другого катета на гипотенузу равна 16. Найти радиус вписанной в этот треугольник окружности. Ответ: 5.

3. В прямоугольный треугольник с периметром 36 вписана окружность. Гипотенуза делится точкой касания в отношении 2:3. Найти гипотенузу. Ответ: 15.

4. В прямоугольном треугольнике отношение высоты к медиане, проведенным из вершины прямого угла равно 4:5. Найти острые углы этого треугольника.
Ответ: и .

5. В прямоугольном треугольнике АВС катеты АВ и АС равны 4 и 3 соответственно. Точка D делит гипотенузу ВС пополам. Найти расстояние между центрами окружностей, вписанных в треугольники ADC и ABD. Ответ: .

6. Гипотенуза АВ прямоугольного треугольника АВС является хордой окружности радиуса 10. Вершина С лежит на диаметре этой окружности, параллельном гипотенузе. Угол САВ равен 750. Найти площадь треугольника АВС. Ответ: 40.

7. Прямоугольный треугольник с периметром 10 разбит высотой, опущенной на гипотенузу, на два прямоугольных треугольника. Периметр одного из них равен 6. Найти периметр другого. Ответ: 8.

Дома:

1. В прямоугольном треугольнике ABC с прямым углом при вершине C выразить катет BC через угол α при вершине A и медиану AM=m, проведенную к катету AC. Ответ: .

2. В прямоугольном треугольнике высота, опущенная из вершины прямого угла, делит гипотенузу на отрезки 9 и 16. Найти радиус вписанной в этот треугольник окружности. Ответ: 5.

3. В прямоугольном треугольнике катета относятся как 2:3, а высота делит гипотенузу на отрезки, разность длин которых равна 2. Найти гипотенузу этого треугольника. Ответ: 5,2.

4. В прямоугольном треугольнике медианы острых углов равны и . Найти гипотенузу этого треугольника. Ответ: 14.

5. В прямоугольном треугольнике биссектриса прямого угла делит гипотенузу на отрезки 3 и 4. Найти площадь этого треугольника. Ответ: 11,76.

6. Точка пересечения медиан прямоугольного треугольника удалена от его катетов на расстояния 3 и 4. Найти расстояние от этой точки до гипотенузы. Ответ: 2,4.

7. Катет прямоугольного треугольника равен 2, а противолежащий ему угол равен 300. Найти расстояние между центрами окружностей, вписанных в треугольники, на которые данный треугольник разбит медианой, проведенной из вершины прямого угла. Ответ: .

8. Гипотенуза КМ прямоугольного треугольника КМР является хордой окружности радиуса . Вершина Р находится на диаметре, параллельном гипотенузе. Расстояние от центра от центра окружности до гипотенузы равно . Найти острые углы треугольника КМР. Ответ: 300, 600.

9. Окружность, центр которой лежит на гипотенузе AB прямоугольного треугольника ABC, касается катетов AC и BC в точках E и D соответственно. Найти угол при вершине B, если AE=1, BD=3. Ответ: 300.



1




Сейчас читают про: