double arrow

Конвенционализм


Бриди остается холоден.

Бриди: На самом деле математика вообще не содержит никакой информации. Сказать «имеется 144 плитки» и сказать «имеется 12 х 12 плиток» - это просто два разных способа высказать одно и то же.

Бриди указывает на окно.

Бриди: Допустим, ты мне скажешь, что животное, которое пасется там вдалеке, это жеребец. Тогда я могу предсказать, что это животное является лошадью мужского пола. Ты удивился бы, если бы мое предсказание оказалось истинным?

Краус: Нет, конечно.

Бриди: Почему же?

Краус: Поскольку существует лингвистическое правило, или конвенция, гласящее.что выражения «лошадь мужского пола» и «жеребец» взаимозаменимы. Так установлено. Поэтому в твоем «предсказании» нет ничего удивительного. Сказав, что это «лошадь мужского пола», ты дал мне не больше информации, чем было в моем высказывании о том, что это - жеребец.

Бриди: Согласен. Но не будет ли точно так же истинно «предсказание» о том, что 12 х12 плиток есть 144 плитки?

Краус: Почему это?

Бриди: Потому что правила вычислений точно так же являются установлениями или конвенциями, которые мы принимаем. Из этих правил следует, что выражения «12 х 12» и «144» взаимозаменимы. Поэто-





му произнести выражения «12 х 12 плиток» и «144 плитки» значит высказать одну и ту же информацию дважды.

Теория, согласно которой математические истины являются «истинами по соглашению», поскольку все они представляют собой более или менее отдаленные следствия принятых нами соглашений, называется конвенционализмом. Конечно, правила, используемые в математических вычислениях, являются гораздо более сложными, нежели те простые правила, которые говорят о взаимозаменимости выражений «жеребец» и «лошадь мужского пола». Однако, по мнению Бриди, принципиальной разницы между ними нет.







Сейчас читают про: