double arrow

Разделительно-категорическим называется умозаключение, в котором одна из посылок — разделительное, а другая посылка и заключение — категорические суждения


Простые суждения, из которых состоит разделительное (дизъюнктивное) суждение, называютсячленами дизъюнкции, илидизъюнктами. Например, разделительное суждение «Облигации могут быть предъявительскими или именными» состоит из двух суждений — дизъюнктов: «Облигации могут быть предъявительскими» и «Облигации могут быть именными», соединенных логическим союзом «или». Утверждая один член дизъюнкции, мы с необходимостью должны отрицать другой и, отрицая один из них, — утверждать другой. В соответствии с этим различают два модуса разделительно-категорического умозаключения: (1) утверждающе-отрицающий и (2) отри-цающе-утверждающий.

1. В утверждающе-отрицающем модусе (modus ponendo tollens) меньшая посылка — категорическое суждение — утверждает один член дизъюнкции, заключение — также категорическое сужде­ние — отрицает другой ее член. Например;

Облигации могут быть предъявительскими (р) или именными (q). Данная облигация предъявительская (q).

Данная облигация не является именной (не-q). Схема утверждающе-отрицающего модуса:

PÚq, P

ùq

Заключение по этому модусу всегда достоверно, если соблюдается правило:большая посылка должна быть исключающе-разделительным суждением, или суждением строгой дизъюнкции. Если это правило не соблюдается, достоверного заключения получить нельзя.




2. В отрицающе-утверждающем модусе (modus tollendo ponens) меньшая посылка отрицает один дизъюнкт, заключение утверждает другой. Например:

Облигации могут быть предъявительскими (р) или именными (q). Данная облигация не является предъявительской (не-р).

Данная облигация именная (q).

Схема отрицающе-утверждающего модуса:

<pvq>, ùp

q

< > — символ закрытой дизъюнкции. Утвердительный вывод получен посредством отрицания: отрицая один дизъюнкт, мы утверждаем другой. Заключение по этому модусу всегда достоверно, если соблюдается правило: в большей посылке должны быть перечислены все воз­можные суждения — дизъюнкты, иначе говоря, большая посылка должна быть полным (закрытым) дизъюнктивным высказыванием. Применяя неполное (открытое) дизъюнктивное высказывание, достоверного заключения получить нельзя. Разделительная посылка может включать не два, а три и больше членов дизъюнкции.







Сейчас читают про: