Основные этапы внутритрубной диагностики трубопроводов

Внутритрубное обследование проводится в четыре уровня:

1. Обследование трубопровода с помощью снарядов – профилемеров. Они определяют дефекты геометрии стенки труб (гофры, овальность, вмятины).

2. С помощью ультразвуковых снарядов – дефектоскопов ведут поиск, измеряют коррозионные дефекты, расслоение металла труб

3. С помощью магнитных снарядов – дефектоскопов выявляют дефекты кольцевых сварных швов.

4. С помощью более современных ультразвуковых дефектоскопов СД ведут обнаружение и измеряют трещиноподобные дефекты в продольных швах и в теле трубы.

С помощью программ определяют степень опасности выявленных дефектов.

Классиф-ция деф-ов труб, опр-ых с помощью ВТД.

4 класса дефектов:

1. дефекты геометрии(гофры, вмятины, овальности).Приводят к снижению несущ-ей спос-ти трубы,к сниж-ю произв-ти.

2. Деф-ты стенки трубы (расслоение Ме трубы,включения,трещины, царапины,корроз-е поврежд-ия, потери Ме местного происх-ия). Приводят к сниж-ию несущ. спос-ти трубы.

3. Деф-ты попер-х сварных швов (непровары,поры и смещ-ие кромок шва).

4.Деф-ты прод-го заводс-го шва (те же).

ВТД. Перед провед-ем ВТД нужно произв-ти очистку внутр-ей полости трубы от отложений.В кач-ве мат-ов очистных дисков для очистных снар-ов прим-ся полиуретан.

ВТД пров-ся в 4 этапа: 1.Выявл-ся деф-ты геометрии трубы с пом-ю снарядов профилемеров.

2.выявл-ся деф-ты стенки трубы с пом-ю ультразвук-х снарядов «Ультраскан».

3.Деф-ты попер-ых сварных швов с пом-ю магн-ых снарядов «Магнискан»

«-«намагн-ся труба

4. Выявл-ся деф-ты прод-ых свар-х швов,деф-ты,ориент-ые в прод-ом напр-ии-ультразв-ми снарядами большого разрешения «Ультраскан».

По рез-ам диагн-го обслед-ия все деф-ты классиф-ют на 3 гр-пы:

-дефекты типа ПОР;-деф-ты ДПР (деф-ы, подл-ие рем-ту);-деф-ты,не треб-ие провед-ие рем-та.Они заносятся в банк данных для послед-го мониторинга.

По рез-ам диагн-ки пров-ся выборочный рем-т или сплошной (при скопленни деф-ов)

С помощью программ определяют степень опасности выявленных дефектов.

Диагностика линейной части газопровода.

При эксплуатации мг происходит загрязнение его внутренней поверхности частицами породы, окалиной, отслоившейся от труб, конденсатом, водой, метанолом и.т.д. Это приводит к увеличению коэффициента гидравлического сопротивления и соответственно к снижению пропускной способности газопровода. Внутреннюю поверхность газопровода от загрязнений очищают следующими способами: периодически очистными устройствами без прекращения перекачки газа; разовым использованием очистных устройств с прекращением подачи газа;; установкой конденсатосборников и дренажей в пониженных точках газопровода; повышением скоростей потоков газа в отдельных нитках системы газопроводов и последующим улавливанием жидкости в пылеуловителях КС. В качестве очистных устройств применяют очистные поршни, скребки, поршни-разделители. В зависимости от вида загрязнений применяют и определенные очистные устройства. Основное требование к ним: быть износостойкими, обладать хорошей проходимостью через запорные устройства, простыми по конструкции и дешевыми. Наиболее часто применяют очистные устройства типа ДЗК-РЭМ, ОПР-М, позволяющие одновременно очищать полость газопровода от твердых и жидких веществ. Для очистки газопроводов больших диаметров применяют поршни-разделители ДЗК-РЭМ-1200, ДЗК-РЭМ-1400, ОР-М-1200, ОПР-М-1400. Поршень монтируют с двумя, тремя, и более очистными элементами. Для движения поршня по газ-ду на нем создается определенный перепад давления, который зависит в основном от его конструкции. Создаваемый перепад р на поршне в среднем равен 0,03-0,05 Мпа. На всех проектируемых и вновь вводимых мг предусматривают устройства по очистке внутренней полости газопровода от загрязнения при помощи пропуска очистных поршней. В состав устройства входят узлы пуска и приема очистных поршней, система контроля и автоматического управления процессов очистки. Узлы пуска и приема очистных поршней изготавливают на рабочее р 7,5 Мпа и температуру рабочей Среды от -60 до 60 оС. Для контроля за прохождением очистных устройств по газопроводу в отдельных его точках стоят анализаторы прохождения поршня. Разработан комплекс Волна-1, предназначенный как для сигнализации прохождения очистных устройств по газопроводу, так и для отыскания их в случае застревания в нем.

11. Переходы трубопроводов через водные преграды и классификация их по способу строительства.

Переходы через водные преграды делятся по способу строительства на:

1. подводные;

2. воздушные: балочные на опорах, вантовые переходы, арочные.

В границу воздушного перехода трубопровода через водную преграду входят надземная часть и участки подземного трубопровода длиной по 50 м от места выхода трубы на поверхность.

К подводным трубопроводам относятся линейная часть, проходящая через водные преграды шириной более 10 м по зеркалу воды в межень (наименьший уровень воды) и глубиной более 1,5 м.

Границами подводного перехода являются:

1. для многониточных переходов – это участок, ограниченный запорной арматурой, расположенной на берегах.

2. для однониточных – это участок, ограниченный горизонтом высоких вод не ниже отметок 10% обеспеченности.

Трубопроводы основной и резервной ниток на участке подводного перехода и от подводного перехода до КППСОД должен проектироваться в соответствии с высшей категорией сложности.

ПП через водные преграды, шириной более 75 м по зеркалу воды в межень, в обязательном порядке оборудуются резервными нитками.

ПП по способу строительства делятся на:

1. Построенные траншейным способом. Традиционный способ строительства. Недостатки: необходимость ежегодного обследования, неэкологичность способа, необходимость капительного ремонта через 10-15 лет.

2. Построенные методом наклонно-направленного бурения. Достоинства: обеспечивает надежность эксплуатации подводного участка трубопровода (до 30 лет); экологичность способа.

3. Построенные методом микротоннелирования. Применяется значительно недавно. Преимущества: надежность и долговечность. Подводные переходы построенные методом микротонелирования разделяются на: переходы с тоннелем межтрубное пространство, которого заполнено инертным газом под избыточным давлением; переходы с тоннелем межтрубное пространство которое заполнено жидкостью с антикоррозийными свойствами покрытием с избыточным давлением.

4. Построенные методом «труба в трубе».

В состав сооружений перехода через водные преграды входят следующие объекты:

1. участок магистрального трубопровода в границах перехода;

2. узлы береговой запорной арматуры и КППСОД;

3. берего- и дноукрепительные сооружения, предназначенные для предотвращения размыва береговой м русловой части перехода;

4. информационные знаки ограждения охранной зоны перехода на судоходных и сплавных реках; указательные знаки оси трубопровода на береговых участках; знаки закрепления геодезической сети перехода;

5. пункт наблюдения (блокпост) обходчика;

6. вдольтрассовая ЛЭП;

7. система ЭХЗ в границах перехода;

8. трансформаторная подстанция для обеспечения электроэнергией запорной арматуры и средств ЭХЗ;

9. средства и оборудования телемеханики;

10. стационарные маркерные пункты для выполнения работ по внутритрубной диагностике;

11. датчики отбора давления, манометрические узлы, сигнализаторы прохождения очистных устройств, системы обнаружения уточек, системы контроля межтрубного пространства;

12. опорные сооружения воздушных переходов.

Требования к оборудованию ПП.

1. ПП должны быть оборудованы системами обнаружения утечек, а переходы, построенные методом «труба в трубе» должны быть оборудованы системами контроля давления в межтрубном пространстве. Информация о давлении должна подаваться на диспетчерский пункт ближайшей станции.

2. Резервные нитки оборудуются КППСОД.

3. ПП через судоходные и сплавные реки шириной более 500 м по зеркалу воды в межень должны иметь блокпост обходчика, оборудованный телефонной и радиосвязью.

4. ПП оборудуются постоянными геодезическими знаками (реперами), которые закладываются ниже глубины промерзания грунта, чтобы предотвратить морозный подъем репера.

5. Задвижки или краны, установленные на переходе, должны быть электрифицированы, телемеханизированы и находится в системе телеуправления. Электроснабжение задвижек и кранов должно осуществляться от двух независимых источников.

6. Задвижки имеют технологический номер, указатели положения затвора, ограждения, предупреждающие аншлаги. Береговые задвижки и краны должны обеспечивать герметичность отключенного участка перехода.

7. Для освобождения ПП от нефти в аварийных ситуациях путем замещения водой с пропуском разделителей, узлы береговых задвижек основной и резервной нитки перехода оборудуются с вантузами с Ду не менее 150 мм.

8. Задвижки и краны переходов должны иметь обвалование. Основные требования к обвалованию: высота обвалования 0,7 м; внутренние откосы обвалования должны быть укреплены протифильтрационным экраном; расстояние от основных задвижек или кранов до подошвы обвалования составляет 1,5 м.

9. Для проведения работ по внутритрубной диагностике в границах перехода должны устанавливаться маркерные пункты.

Требования к оборудованию воздушных переходов.

1. На трубопроводе и опорах ВП устанавливаются реперы для выполнения геодезического контроля положений элементов конструкции перехода.

2. Склоны оврагов и берега водного перехода в местах установки береговых опор должны быть оборудованы гасителями скорости потока (растительный покров, ступенчаты перепады, водопойные колодцы).

3. Русловые опоры балочных переходов должны иметь ледорезы в соответствие с проектом.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: