Функции

· Принимает участие в делении клеток животных и низших растений.

· В начале деления (в профазе) центриоли расходятся к разным полюсам клетки.

· От центриолей к центромерам хромосом отходят нити веретена деления.

· В анафазе эти нити притягивают хроматиды к полюсам.

· После окончания деления центриоли остаются в дочерних клетках, удваиваются и образуют клеточный центр.

15.Включения. Классификация, состав и значение.

Включениями называют относительно непостоянные компоненты цитоплазмы, которые служат запасными питательными веществами (жир, гликоген), продуктами, подлежащими выведению из клетки (гранулы секрета), балластными веществами (некоторые пигменты).

Классификация:

· Трофические: белковые, углеводные, жировые, витамины. В растительных клетках это белок семян пшеницы – глиадин, белок семян кукурузы – зеин. В животных клетках: белок молока – казеин, яичный белок – овальбумин, в яичном желтке – вителлин, в икринках рыб - ихтулин.

· Пигментные (специальные): гемоглобин, липофусцин, меланин, каротин, хлорофилл. Эти включения имеют определенный цвет и придают окраску всей клетке (меланин - черный или коричневый, гемоглобин - желто-красный и так далее). Необходимо отметить, что пигментные включения характерны только для определенных типов клеток (меланин содержится в меланоцитах, гемоглобин - в эритроцитах). Однако, липофусцин может накапливаться во многих типах клеток обычно при их старении. Его наличие в клетках свидетельствует о их старении и функциональной неполноценности.

· Секреторные: Растения: фитогормоны, фитонциды. Животные: секреты клеток желудочно-кишечного тракта, серозных оболочек, феромоны, медиаторы.

· Экскреторные - это, как правило, продукты метаболизма клетки, от которых она должна освободиться: соли щавелевокислого кальция, мочевина.

· Неспецифические: пыль, сажа. Присутствуют во всех видах клеток.

16. Ассимиляция и диссимиляция как основа самообновления биологических систем. Определение, сущность, значение.

Все живые организмы способны к обмену веществ с окружающей средой, поглощая из нее элементы, необходимые для питания, и выделяя продукты жизнедеятельности. В круговороте органических веществ самыми существенными стали процессы синтеза и распада.

Ассимиляция или пластический обмен – совокупность реакций синтеза, которые идут с затратой энергии АТФ. В процессе ассимиляции синтезируются органические вещества, необходимые клетке. Примером таких реакций являются фотосинтез, биосинтез белка и репликация ДНК.

Аминокислоты -> Белки Глюкоза -> Полисахариды Глицерин + Жирные кислоты -> Жиры Нуклеотиды -> Нуклеиновые кислоты

Другая сторона обмена веществ - процессы диссимиляции, в результате которых сложные органические соединения распадаются на простые соединения, при этом утрачивается их сходство с веществами организма и выделяется энергия, запасаемая в виде АТФ, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют еще энергетическим обменом. Наиболее важными процессами энергетического обмена являются дыхание и брожение.

Белки -> Аминокислоты Полисахариды -> Глюкоза Жиры -> Глицерин + Жирные кислоты Нуклеиновые кислоты -> Нуклеотиды

Обмен веществ обеспечивает постоянство химического состава и строения всех частей организма и как следствие - постоянство функционирования в непрерывно меняющихся условиях окружающей среды.

Дезоксирибонуклеиновая кислота, ее строение и свойства. Мономеры ДНК. Способы соединения нуклеотидов. Комплементарность нуклеотидов. Антипараллельные полинуклеотидные цепи. Репликация и репарация.

Структура молекулы ДНК была расшифрована в 1953г Уотсоном, Криком, Уилкинсом. Это две спирально закрученные антипараллельные (напротив конца 3/ одной цепи располагается 5/ конец другой) полинуклеотидные цепи. Мономерами ДНК являются нуклеотиды, в состав каждого из них входят: 1) дезоксирибоза; 2) остаток фосфорной кислоты; 3) одно из четырех азотистых оснований (аденин, тимин, гуанин, цитозин). Нуклеотиды соединяются в цепочку благодаря фосфорно-диэфирным связям между дезоксирибозой одного остатка и остатком фосфорной кислоты другого нуклеотида. Азотистые основания присоединяются к дезоксирибозе и образуют боковые радикалы. Между азотистыми основаниями цепочек ДНК устанавливаются водородные связи (две между Аденином и Тимином, три между Гуанином и Цитозином). Строгое соответствие нуклеотидов друг другу в парных цепочках ДНК называется комплементарностью. ДНК является хранителем генетической информации во всех клетках про- и эукариот.

Антипараллельные полинуклеотидные цепи двойной спирали ДНК не идентичны ни по последовательности оснований, ни по нуклеотидному составу. Однако они комплементарны друг другу: где бы ни появился в одной цепи аденин, напротив него в другой цепи обязательно будет стоять тимин, а против гуанина в одной цепи обязательно стоит цитозин другой цепи. Это означает, что последовательность оснований в одной цепи однозначно определяет последовательность оснований в другой (комплементарной) цепи молекулы.

Репликация молекул ДНК происходит в синтетический период интерфазы. Каждая из двух цепей "материнской" молекулы служит матрицей для "дочерней". После репликации вновь синтезированная молекула ДНК содержит одну "материнскую" цепочку, а вторую - "дочернюю", вновь синтезированную (полуконсервативный способ). Для матричного синтеза новой молекулы ДНК необходимо, чтобы старая молекула была деспирализована и вытянута. Репликация начинается в нескольких местах молекулы ДНК. Участок молекулы ДНК от точки начала одной репликации до точки начала другой называется репликоном. Прокариотическая клетка содержит один репликон, а эукариотическая - содержит много репликонов. Начало репликации активируется праймерами (затравками), состоящими из 100-200 пар нуклеотидов. Фермент ДНК-хеликаза раскручивает и разделяет материнскую спираль ДНК на 2 нити, на которых по принципу комплементарности при участии фермента ДНК-полимеразы собираются «дочерние» цепи ДНК. Фермент ДНК-топоизомераза скручивает «дочерние» молекулы ДНК. В каждом репликоне ДНК-полимераза может двигаться вдоль «материнской» нити только в одном направлении (3/ ⇒ 5/). На лидирующей нити по мере раскручивания репликона постепенно и непрерывно наращивается «дочерняя» цепь. На отстающей нити дочерняя цепь синтезируется также в направлении (3/ ⇒ 5/), но отдельными фрагментами (Оказаки) по мере раскручивания репликона. Таким образом, присоединение комплементарных нуклеотидов «дочерних» нитей идет в противоположных направлениях (антипараллельно). Репликация во всех репликонах идет одновременно. Фрагменты Оказаки и части «дочерних» нитей, синтезированные в разных репликонах, сшиваются в единую нить ферментом лигазой. Репликация характеризуется полуконсервативностью, антипараллельностью и прерывистостью (фрагменты Оказаки). Весь геном клетки реплицируется один раз за период времени, соответствующий одному митотическому циклу.

Молекулы ДНК химически инертны, низкая реакционная способность обеспечивает высокую точность воспроизводимой структуры ДНК. При удвоении ошибки возникают в среднем 1*10-6. Для удаления ошибок включается механизм репарации ДНК. Когда поврежденные участки вырезаются при помощи специальных ферментов и заменяются правильными последовательностями. Репарация может быть:

· эксцизионная (вырезная) – дорепликативная. Молекулярное восстановление исходной нуклеотидной последовательности ДНК – искажение последовательности нуклеотидов в одной из двух комплементарных цепей ДНК обнаруживается специфическими ферментами. Соответствующий участок удаляется и замещается новым, синтезированным на второй комплементарной цепи ДНК.

· Пострепликативная. Происходит рекомбинация (обмен фрагментами между двумя вновь образованными двойными спиралями).

Дефект структуры ДНК при утрате пуриновых оснований обнаруживается с помощью фермента эндонуклеазы. В случае обширных повреждений наследственного материала включается SOS система – комплекс ферментов, которые заполняют бреши, восстанавливая целостность синтезируемых полинуклеотидных цепей без точного соблюдения принципа комплементарности.

18. Репликация молекулы ДНК. Репликон. Праймер. Принципы репликации ДНК: полуконсервативность, антипараллельность, прерывистость (фрагменты Оказаки). Фазы репликации: инициации, элонгации, терминации. Особенности репликации ДНК про- и эукариот.

Репликация молекул ДНК – способность к самокопированию полуконсервативным способом по принципу комплементарности. Происходит в синтетический период интерфазы в три этапа: 1)инициация репликации; 2) элонгация; 3) терминация репликации, которые включают узнавание точки началу репликации, расплетание исходного дуплекса (спирали), удержание его цепей в изолированном друг от друга состоянии, инициацию синтеза на них новых дочерних цепей, их рост (элонгацию), закручивание цепей в спираль и терминацию (окончание) синтеза.

Каждая из двух цепей "материнской" молекулы служит матрицей для "дочерней". После репликации вновь синтезированная молекула ДНК содержит одну "материнскую" цепочку, а вторую - "дочернюю", вновь синтезированную (полуконсервативный способ). Для матричного синтеза новой молекулы ДНК необходимо, чтобы старая молекула была деспирализована и вытянута. Репликация начинается в нескольких местах молекулы ДНК. Участок молекулы ДНК от точки начала одной репликации до точки начала другой называется репликоном. Прокариотическая клетка содержит один репликон, а эукариотическая - содержит много репликонов. Начало репликации активируется праймерами (затравками), состоящими из 100-200 пар нуклеотидов. Фермент ДНК-хеликаза раскручивает и разделяет материнскую спираль ДНК на 2 нити, на которых по принципу комплементарности при участии фермента ДНК-полимеразы собираются «дочерние» цепи ДНК. Фермент ДНК-топоизомераза скручивает «дочерние» молекулы ДНК. В каждом репликоне ДНК-полимераза может двигаться вдоль «материнской» нити только в одном направлении (3/ ⇒ 5/). На лидирующей нити по мере раскручивания репликона постепенно и непрерывно наращивается «дочерняя» цепь. На отстающей нити дочерняя цепь синтезируется также в направлении (3/ ⇒ 5/), но отдельными фрагментами (Оказаки) по мере раскручивания репликона. Таким образом, присоединение комплементарных нуклеотидов «дочерних» нитей идет в противоположных направлениях (антипараллельно). Репликация во всех репликонах идет одновременно. Фрагменты Оказаки и части «дочерних» нитей, синтезированные в разных репликонах, сшиваются в единую нить ферментом лигазой. Репликация характеризуется полуконсервативностью, антипараллельностью и прерывистостью (фрагменты Оказаки). Весь геном клетки реплицируется один раз за период времени, соответствующий одному митотическому циклу.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: