Формулы для вычисления координат вектора в ортогональном базисе

- ортогональный базис

Невырожденность ортогональной матрицы.

Изменение матрицы линейного преобразования при замене базиса.

А’=T-1AT

Пусть А – матрица линейного преобразования f в базисе .

Предположим, что мы переходим к новому базису, в котором преобразованию отвечает новая матрица А’, а Т есть матрица перехода от исходного базиса к новому базису.

Х=ТХ, где Х – столбец из старых координат разложенного по базису вектора, а Х’ – столбец из новых координат. Аналогично Y=TY’

Учитывая, что Y=AX, Х=ТХи Y=TY’, установим связь между Х’ и Y’.

Y’=T-1Y=T-1AX=T-1ATX’

Отсюдаследует, что матрицей отображения А в новом базисе будет матрица A’=T-1ATX, чтд.




double arrow
Сейчас читают про: