double arrow

Статистический контроль в военном производстве


Имеется еще один аспект работы советских математиков на помощь фронту, о котором нельзя умалчи­вать — это работа по организации производственного процесса, направ­ленная на повышение производитель­ности труда и на улучшение каче­ства продукции. Здесь они столкнулись с огромным числом проблем, которые по самому их существу нуж­дались в математических методах и в усилиях математиков. Я затрону здесь лишь одну проблему, получив­шую наименование контроля качества массовой промышленной продукции и управления качеством в процессе производства. Эта проблема со всей остротой возникла перед промыш­ленностью уже в первые дни войны, поскольку прошла массовая мобили­зация и квалифицированные рабочие стали солдатами. Им на смену приш­ли женщины и подростки без квали­фикации и рабочего опыта.

Был такой случай: молодому человеку пришлось быть на одном из приборостроительных заводов в Свердловске. Он изготовлял крайне необхо­димые приборы для авиации и ар­тиллерии. У станков он увидел прак­тически только подростков 13 — 15 лет.

Увидел и также огромные кучи бракованных деталей. Сопро­вождавший его мастер пояснил, что эти детали выходят за пределы до­пуска и поэтому непригодны для сборки. А вот если бы удилось собрать из этих «запоротых» деталей пригодные приборы, мы бы смогли сразу ate удовлетворить потребности на месяц вперед.




Слова мастера не давали ему по­коя. В результате общения с инжене­рами завода родилась мысль разбить детали на 6 групп по размерам, которые уже было бы возможно со­прягать между собой. В шестую груп­пу входили детали совершенно не­пригодные для сборки. Исследования показали, что так собранные прибо­ры оказались вполне пригодными для дела. Они обладали одним недостат­ком: если какая-либо деталь выходи­ла из строя, то ее можно было за­менять лишь деталью той же груп­пы, из деталей которой собран при­бор. Но в ту пору и для тех це­лей, для которых были предназначены приборы, можно было обойтись заменой приборов, а не деталей. Им удалось успешно использовать зава­лы» испорченных подростками де­талей.

Задача контроля качества изготов­ленной продукции состоит в следующем. Пусть изготовлено N изделии, они должны удовлетворять некото­рым требованиям.

Скажем, снаряды должны быть определенного диамет­ра, не выходящего за пределы от­резка [D1, D2], иначе они будут не­пригодны для стрельбы. Они должны обладать определенной кучностью при стрельбе, иначе будут затруднения при стрельбе по цели. И если с первой задачей справиться легко — нуж­но замерить диаметры изготовленных снарядов и отобрать те из них, которые не удовлетворяют требова­ниям, то с другим требованием поло­жение значительно сложнее. Действи­тельно, чтобы проверить кучность стрельбы, необходимо провести стрельбы. А что же останется после испытаний? Испытания нужно произ­вести так, чтобы подавляющая часть продукции осталась пригодной для дальнейшего использования. Они столкнулись с основным требованием; по испытанию малой части изделий на­учиться судить о качестве всей пар­тии. Методы, которые были для этой цели предложены, получили название статистических. Их теория берет свое начало с одной работы 1848 года академика М.В. Остроградского. Позднее этой задачей занимались профессор В. И. Романовский (1879 — 1954) в Ташкенте и его ученики. Во время войны их совершенствованием нанялся А.Н. Колмогоров и его уче­ники.



Задача, о которой только что было рассказано, обладает одним дефектом в самой ее постановке: партия про­дукции уже изготовлена и нужно сказать, можно ее принять или же следует ее отвергнуть? Но, спраши­вается, зачем же изготовлять пар­тию, чтобы ее затем браковать? Нельзя ли так организовать произ­водственный процесс, чтобы уже при изготовлении поставить заслон для изготовления некачественной про­дукции? Такие методы были предло­жены и получили название статисти­ческих методов тенящего контроля. Время oт времени со станка берутся несколько (скажем пять) только что наготовленных изделий и замеряются параметры их качества. Если все эти параметры находятся в допустимых пределах, то производственный про­цесс продолжается, если же хотя бы одно изделие выходит за пределы до­пуска, то подается сигнал о необ­ходимой переналадке станка или о смене режущего инструмента. Какое отклонение параметра от номинала допустимо, чтобы вся партия была изготовлена качественно? Это требует специальных расчетов.



После окончания войны выясни­лось, что аналогичные исследования проводили математики США, Они подсчитали, что результаты их рабо­ты принесли за годы войны стране миллиардную экономию. То же самое можно сказать и о работах советских математиков и инженеров.







Сейчас читают про: