Теоретические пояснения

Лабораторная работа № 1

Запись и решение системы дифференциальных уравнений синхронной машины в системе компьютерного моделирования MathCAD

ЦЕЛЬ РАБОТЫ

1.1. Изучить принцип построения математической модели трехфазной синхронной машины с электромагнитным возбуждением.

1.2. Ознакомиться с записью дифференциальных уравнений синхронной машины с электромагнитным возбуждением, работающей от трехфазной сети.

1.3. Изучить параметры, входящие в математическую модель синхронной машины.

1.4. Исследовать процесс пуска синхронной машины с электромагнитным возбуждением посредством численного интегрирования нелинейных дифференциальных уравнений с использованием стандартного математического пакета прикладных программ MATHCAD.

ТЕОРЕТИЧЕСКИЕ ПОЯСНЕНИЯ

Анализ пуска СД удобно проводить на основе математической модели.

В настоящее время на практике рассматривают некоторую идеализированную синхронную машину, для которой обычно принимаются следующие допущения [2]:

1. Изменение насыщения магнитной цепи при выводе уравнений не учитывается.

2. Потери в стали, явления гистерезиса, и вытеснения тока отсутствуют.

3. Кривые магнитодвижущих сил и индукции распределены в воздушном зазоре синусоидально.

4. Индуктивные сопротивления рассеяния обмоток синхронных машин не зависят от положения ротора в пространстве.

5. Обмотки синхронных машин симметричны. Фазы статорных обмоток имеют одинаковые числа витков, активные сопротивления и взаимный сдвиг магнитных осей. Стержни короткозамкнутых обмоток ротора расположены симметрично относительно продольной (d) и поперечной (q) осей ротора.

6. Синхронная машина работает от сети бесконечно большой мощности.

7. Переменные напряжения, приложенные к зажимам обмоток, синусоидальны.

Для математического описания переходных процессов, происходящих в синхронных машинах, составляются уравнения равновесия напряжений обмоток и уравнения равновесия моментов на валу машины (уравнения движения). Форма их записи во многом определяется выбором системы координатных осей и положительных направлений величин.

Обычно для синхронной машины общепринята система координатных осей d – q, жестко связанных с ротором, которая показана на рис. 1 [2 и др.]. При этом положительным направлением фазных токов считается направление от концов фаз к их началам. За положительные направления осей трехфазной обмотки принимаются положительные направления магнитодвижущих сил (МДС) соответствующих катушек. Направление продольной оси ротора d совпадает с осью полюса ротора, а направление поперечной оси ротора q опережает ось d на 90 электрических градусов. Вращение ротора и системы координатных осей против часовой стрелки принимается в качестве положительного. Положительными являются величины (проекции векторов), направления которых совпадают с положительным направлением координатных осей.

За исходный режим работы синхронной машины принимается режим работы двигателем, поэтому электромагнитный вращающий момент и угол нагрузки принимаются положительными в режиме двигателя.

В преобразованной системе координат решение уравнений синхронной машины существенно упростится, если воспользоваться общепринятой системой относительных единиц. Величины, выбранные в качестве базисных величин, приводятся в [2].

Примем во внимание, что обмотки ротора приведены к статорной обмотке. То есть, роторные обмотки пересчитаны на число фаз и витков обмотки статора. Это дает возможность применять одну систему относительных единиц для обмоток ротора и статора. Кроме того, короткозамкнутую демпферную обмотку ротора заменим двумя эквивалентными короткозамкнутыми контурами по продольной и поперечной осям [2].

В выбранной нами системе координатных осей d и q, вращающихся вместе с ротором, и системе относительных единиц дифференциальные уравнения СД с электромагнитным возбуждением при постоянном по амплитуде и частоте напряжении питания имеют следующий вид [2 и др.]:

(1)

где электромагнитный момент вращения определяется выражением

(2)

а потокосцепления обмоток записываются следующим образом:

(3)

В выражениях (1) – (3) использованы следующие обозначения:

- активные сопротивления контуров;

- индуктивности;

- взаимные индуктивности;

- мгновенные значения тока;

- мгновенные значения потокосцеплений;

- мгновенные значения напряжений;

- электромагнитный вращающий момент;

- момент сопротивления на валу;

- мгновенное значение угловой скорости вращения ротора;

- механическая постоянная вращающихся масс;

- время, выраженное в системе относительных единиц.

В системе уравнений (1) напряжения и есть проекции вектора фазного напряжения на продольную и поперечную оси в принятой системе координат.

Из векторной диаграммы для недовозбужденной синхронной машины, работающей в режиме двигателя, можно записать:

(4)

где - это угол между вращающимся вектором напряжения и поперечной осью ротора, называемый обычно углом нагрузки.

В принятой системе относительных единиц выражение (4) несколько упрощается, если принять, что = 1

(5)

Угол нагрузки в системе физических единиц можно определить из соотношения

(6)

где - угловая скорость вращения магнитного поля, принятая за базисную;

- начальное значение угла нагрузки.

Продифференцировав левую и правую части уравнения (6), найдем, что

(7)

Поделив обе части (7) на базисную угловую скорость, получим

(8)

В системе относительных единиц уравнение (7), с учетом (8) и того, что , приобретает вид

(9)

При использовании вычислительных машин систему уравнений (1) целесообразно привести к виду, удобному для моделирования. Для этого необходимо в левые части уравнений перенести первые производные переменных, то есть представить исходную систему уравнений (1) в виде нормальных дифференциальных уравнений.

Подставим уравнения (5) и (9) в систему (1) и запишем ее следующим образом:

(10)

Система уравнений (10) является системой дифференциальных уравнений СД с электромагнитным возбуждением при работе от сети с постоянным по амплитуде и частоте напряжением.

Уравнения для электромагнитного момента (2) и потокосцеплений (3) остаются без изменения. Необходимо подчеркнуть, что выражения для потокосцеплений (3) записаны через индуктивности и взаимоиндуктивности. В системе относительных единиц индуктивности и индуктивные сопротивления, рассчитанные для номинальной (базисной) частоты, выражаются одним и тем же числовым значением

(11)

где - индуктивные сопротивления.

С учетом этого (3) удобнее записать так:

(12)

где

(13)

В выражениях (13) индекс указывает на индуктивные сопротивления рассеяния соответствующих контуров.

Если из выражений для потокосцеплений (12) определить токи и подставить их в (1) и (10), то получим систему уравнений, состоящую из семи дифференциальных уравнений с семью переменными.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: