Описание свойства, характеризуемого данной величиной, производится на языке, других величин, принятых за основные. Эта возможность обусловливается наличием объективно существующих связей между свойствами объектов, описываемых уравнениями между величинами.
Число уравнений n в любом разделе науки меньше числа таким образом связываемых величин N. В каждом уравнении имеется свой известный коэффициент пропорциональности, которому можно придать любое значение и, в частности, приравнять равным единице. Если для N-n физических величин выбрать свои независимые единицы, то они становятся известными числами и n уравнений решаются относительно оставшихся n физических величин. Поэтому и принято выделять в отдельную группу некоторые величины, называемые основными. Остальные величины называются производными. Число основных единиц тесно связано с числом коэффициентов, стоящих в выражениях для физических величин. Коэффициенты пропорциональности, зависящие от выбора основных единиц, называются фундаментальными или мировыми постоянными. В системе SI к ним относятся гравитационная постоянная, постоянная Планка, постоянная Больцмана, и световая эффективность. Их следует отличать от специфических постоянных, характеризующих различные свойства отдельных объектов, массу и заряд электрона, например.
Фундаментальные константы присутствуют в выражениях для всех физических законов, но соответствующим выбором единиц определенное их число приравнено к каким либо постоянным числам, обычно к единице. Чем больше основных единиц принято при построении системы, тем больше фундаментальных констант будет присутствовать в формулах. Сокращение числа основных единиц сопровождается уменьшением числа основных постоянных.
Совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие являются их функциями, называется системой физических величин. Единица физической величины - это физическая величина фиксированного размера, которой условно присвоено числовое значение равное единице, и которая применяется для количественного выражения однородных физических величин. Единица основной ФВ является основной единицей данной системы. Размер единиц устанавливается законодательно метрологическими органами государства.
Связь данной величины с основными ФВ выражается в форме степенного многочлена и называется размерностью (dimension): dim Q = К La Mb Tg, где L, M, T- условные обозначения основных величин данной системы; a, b, g - целые или дробные, положительные или отрицательные вещественные числа. Показатели степени, в которую возведена размерность основной величины, называют показателем размерности. Если все показатели размерности равны нулю, то такую величину называют безразмерной. Понятие размерности используется: для перевода единиц из одной системы в другую; для проверки правильности вывода формул; в теории физического подобия. Для производных единиц ФВ, называемых когерентными, числовой коэффициент в уравнении связи с основными К = 1. Единица скорости в системе СИ – когерентна.
В названии системы физических величин применяют символы, величин принятых за основные. Например: СГС - сантиметр, грамм, секунда. 1.4.1. Система единиц СИ В системе SI (System International),введенной в нашей стране ГОСТ 8.417-81 “ГСИ. Единицы физических величин” основными величинами и соответственно единицами являются: длина (метр), масса (килограмм), время (секунда), сила электрического тока (ампер), температура (кельвин), количество вещества (моль) и сила света (канделла).
В 1983 г. основными были названы единицы времени и скорости, а единице скорости света в вакууме было придано точное, но в принципе произвольное значение с = 299 792 458 м/с. Длина и ее единица метр стали по, существу, производными. Однако формально длина в SI остается основной физической величиной и ее единица определяется так: Метр − расстояние, которое свет проходит в вакууме за 1/299 792 458 долей секунды. Секунда − 9 192 631 770 периодов излучения, соответствующих переходу между двумя сверхтонкими уровнями атома цезия Cs − 133. Килограмм − масса международного прототипа килограмма. Это цилиндр из сплава платины и иридия, единственный потенциально уничтожаемый из всех эталонов основных единиц системы СИ. Он подвержен старению и требует применения громоздких поверочных схем. Однако современное состояние науки не позволяет связать килограмм с естественными атомными константами с достаточной точностью. До сих пор это единственная договорная единица. Кельвин − единица измерения температуры. Один кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.
Для получения оптимальной системы электромагнитных единиц достаточно было к трем, выбранным в механике основным единицам добавить одну электромагнитную, выбрав ее из четырех вновь введенных величин: электрического тока I, электрического заряда q, магнитной проницаемости m0 вакуума и диэлектрической проницаемости e0 вакуума. К обстоятельствам чисто практического удобства и исторически сложившимся моментам использования ампера, вольта и других электротехнических величин дополнились еще и проблемы создания универсальной системы для всех областей науки. В системе СИ за основную единицу выбрана единица абсолютной магнитной проницаемости вакуума m0 = 4p 10-7Гн/м. Однако формально основной единицей считается ампер. Это связано с тем, что при выборе основной единицы m0 и постулирования ее численного значения невозможно реализовать ее в виде эталона. Поэтому и реализуется она через производную единицу. Пример: единица скорости материализуется эталоном метра, а единица магнитной проницаемости через эталон ампера. Ампер − это сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малой площади кругового поперечного размера, расположенным в вакууме на расстоянии 1м один от другого, вызывает на каждом участке проводника длиной 1м силу взаимодействия, равную 2·10-7.
Световые измерения связаны с ощущениями человека, воспринимающего световой поток посредством глаз, поэтому они не вполне объективны. Наблюдатель реагирует лишь на ту часть светового потока, которая напрямую воздействует на глаз. Обычные энергетические измерения в этой связи не совсем удобны. Между световыми и энергетические единицами существует однозначная связь и для описания световых измерений не требуется введения новой световой величины. Однако с учетом исторически сложившихся основных единиц и большого влияния субъективных обстоятельств при измерении световых величин, было принято решение ввести единицу света − канделлу. Канделла − сила света в заданном направлении источника, испускающего, монохроматическое излучение частотой 540·1012 Гц, энергетическая сила излучения которого в этом направлении составляет 1/683 Вт·ср-1. Моль − количество вещества системы, содержащей столько же структурных элементов, сколько содержится в углероде 12 массой 0,012кг. Единица ФВ называется системной, если она входит в одну из принятых систем и внесистемной, если не входит. Внесистемные единицы по отношению к единицам SI бывают 4-х видов: допускаемые наравне с единицами SI. Например, единица массы - тонна, единицы объёма − литр; допускаемые к применению в специальных областях. Например, астрономическая единица, парсек, физическая единица энергии – электрон − вольт; временно допускаемые к применению наравне с единицами системы SI. Например, карат − единица массы в ювелирном деле; устаревшие (недопускаемые). Например: единица мощности − лошадиная сила.
Кратные единицы — это единицы ФВ, в целое число раз превышающие системную или внесистемную единицу. Дольные единицы − это единицы ФВ, в целое число раз меньше системной или внесистемной единицы. Например, километр = 103м. миллиметр = 10-3м и т.д.
Система СГС до сих пор применяется в физике, астрономии. Однако достоинствамиSI, обусловившими ее применение в большинстве стран мира являются: универсальность; унификация всех видов измерений; когерентность величин; возможная высокая точность в определении единиц; упрощение записи в формулах в физике, химии, в связи с отсутствием переводных коэффициентов; уменьшение числа допускаемых единиц; единая система образования кратных и дольных единиц; облегчение педагогического процесса в средней и высшей школе; лучшее взаимопонимание при развитии экономических и научно-технических связей между странами.