Биологическое окисление

Биологическое окисление (БО) – это катализируемое ферментами окисление веществ в тканях, которое происходит: 1). путем дегидрирования субстратов с переносом водорода на вдыхаемый кислород (аэробное окисление) или на другой акцептор (анаэробное окисление) при участии аэробных и анаэробных дегидрогеназ, соответственно; либо 2). путем включения в субстрат одного или 2-х атомов кислорода, при участии монооксигеназ и диоксигеназ, соответственно. Реакции анаэробного окисления протекают в цитоплазме, аэробное окисление происходит - в митохондриях, с участием дыхательной цепи (ДЦ), в микросомах, пероксисомах. Окисление восстановленных субстратов (2) сопровождается освобождением

2 атомов водорода, которые используються в реакциях восстановительного синтеза и в дыхательной цепи митохондрий, где происходит их соединение с кислородом с образованием эндогенной воды, а энергия электронов рассеивается в виде тепла (〜50-60%), поддерживая t0 тела, и аккумулируется всинтезируемых молекулах АТФ (〜 40-50%). АТФ является подвижным, перемещающимся в клетке, универсальным источником химической энергии для большинства эндергонических биологических систем. Время жизни молекулы АТФ не превышает 1-2 минуты, в сутки в организме человека синтезируется и распадается количество АТФ, равное массе тела. При гидролизе 1 моля АТФ освобождается в реальных условиях клетки 〜50 кДж энергии (〜12 ккаль/моль). Использование АТФ как источника энергии возможно только при условии непрерывного его синтеза из АДФ и Н3РО4 за счет энергии окисления органических соединений, т.е. аденилатная система функционирует как биологический аккумулятор энергии, освобождающейся в реакциях окислительного распада веществ, который обеспечивает энергией все работающие механизмы клеток. Энергия в процессе жизнедеятельности необходима для поддержания t0 тела, для совершения химической работы (синтез органических содинений, усложнение структуры веществ); совершения осмотической работы (транспорт веществ через биологическую мембрану против градиента концентрации); механической работы (мышечное сокращение) и др.

Каждое органическое соединение обладает определенным запасом внутренней энергии, часть которой может быть использована для совершения полезной работы, такую энергию системы называют свободной энергией (G). В зависимости от изменения свободной энергии химические реакции делятся на: 1. экзергонические – протекают самопроизвольно и сопровождаются уменьшением свободной энергии веществ системы (▵G). Это реакции с отрицательными значениями ▵G, реакции распада веществ, и 2. эндергонические – это реакции с положительныи значениями ▵G и для их протекания энергия должна поступать извне. Это реакции усложнения структуры и синтеза веществ. В биологических системах существует сопряжение этих процессов, т.е. эндергонические реакции (териодинамически невыгодные) могут протекать только за счет энергии экзергонических реакций.

Тканевое дыхание – поглощение клетками кислорода, необходимого для реализации процессов БО. 90% поступающего в клетки О2 поглощается в дыхательной цепи переноса электронов, что сопряжено с синтезом АТФ, остальная часть кислорода используется в других окислительно-восстановительных реакциях при участии оксидаз и оксигеназ.

Этапы БО, сопряженного с синтезом АТФ: Носителями энергии являются электроны, формирующие связи между атомами в органических субстратах, и чтобы использовать эту энергию, необходимо разорвать в молекуле субстрата межатомарные связи и дать возможность возбужденным электронам высвободить свою избыточную энергию:

1) распад олиго- и полимеров до мономеров (белков и пептидов до а/к, олиго- и полисахаридов до моносахаров, жиров до глицерина и жирных кислот), 2) окислительный распад глюкозы (дихотомический распад, гликолиз), а/к (окислительное дезаминирование), глицерина до ПВК, 3) окислительное декарбоксилирование ПВК в ПДГ -комплексе и β-окисление жирных кислот до АцетилКоА, а также окисление кетогенных аминокислот до АцетилКоА, 4) окисление АцетилКоА в цикле Кребса до 2СО2, 5) окислительное фосфорилирование (ОФ) в дыхательной цепи митохондрий, которое сопровождается синтезом АТФ за счет энергии электронов восстановленных на предыдущих этапах НАДНН+ и ФАДН2.

В ПДГ-комплексе происходит окислительное декарбоксилирование ПВК с образованием АцетилКоА и восстановлением НАДНН+ при участии 3 ферментов (ТПФ -зависимая пируватдекарбоксилаза, ацетиллипамидтрансфераза, ФАД -зависимая дигидролипамиддегидрогеназа) и 5 коферментовТПФ (В1-тиамин), Липамид (Липоевая кислота), КоАSН (В5-пантотеновая кислота), ФАД (В2-рибофлавин), НАД+ (РР-никотинамид). Последовательность реакций в ПДГ-комплексе:1. декарбоксилирование ПВК при участии ТПФ -зависимой пируватдекарбоксилазы; 2. перенос ацетильного остатка пирувата на КоАSН при участии ацетиллипамидтрансферазы с образованием АцетилКоА и дигидролипамида. 3. окисление дигидролипамида при участии ФАД -зависимой дигидролипамиддегидрогеназы с последовательным восстановлением ФАД, а затем НАД+ до НАДНН+. Далее АцетилКоА окисляется в ц. Кребса, а НАДНН+ окисляется в полной ДЦ.

В цикле Кребса происходит окислительный распад АцетилКоА до 2СО2, что сопровождается восстановлением 3НАДНН+, 1ФАДН2 и синтезом 1 АТФ (ГТФ) субстратным фосфорилированием за счет энергии СукцинилКоА. Далее 3НАДНН+ окисляются в ПДЦ митохондрий (полной дыхательной цепи) и это обеспечивает синтез 7,5 АТФ (на каждую по 2,5), а ФАДН2 окисляется в УДЦ (укороченной дыхательной цепи), что обеспечивает синтез 1,5 АТФ. Т.о., на каждую АцетилКоА синтезируется по 10 АТФ, из которых 1 АТФ – собственно в цикле Кребса субстратным фосфорилированием () за счет энергии сукцинилКоА и 9 АТФокислительным (ОФ) в дыхательной цепи. Значение цикла Кребса: 1. является основным генератором атомов водорода для ДЦ митохондрий (4 пары атомов водорода, за счет дегидрирования 4S: изоцитрата, кетоглутарата, сукцината и малата), 2. за счет энергии сукцинилКоА синтезируется 1АТФ субстратным фосфорилированием, 3. ц. Кребса объединяет реакции распада и синтеза веществ (амфиболичность ц. Кребса): так до ЩУК распадаются аспарагин и аспартат, и из него же синтезируются; глутамат, глутамин ⇆ α-кетоглутарат; из сукцинилКоА синтезируется гем), 4. анаплеротическая функция (пополняющая): а). образование ЩУК за счет карбоксилирования ПВК при участии митохондриальной АТФ, карбоксибиотин -зависимой пируваткарбоксилазы; б). образование ПВК и восстановленного НАДФНН+ из малата при участии НАДФ+ -зависимой малатдегидрогеназы (малик-фермент).

Механизмы синтеза АТФ: 1 – окислительное фосфорилирование в ДЦ (основной механизм) и 2 – субстратное фосфорилирование, при котором синтез АТФ происходит за счет энергии макроэргического субстрата (МС). Макроэргическими называются S, имеющие в своей молекуле макроэргическую связь, при разрыве которой освобождается большое количество свободной энергии (более 20–25 кДж/моль или 5–6 ккаль/моль). К МС относятся: АТФ и другие нуклеозидтрифосфаты, сукцинилКоА – образуется в ц.Кребса; креатинфосфат – мышечный макроэрг; два субстрата гликолиза: 1, 3-дифосфоглицерат и фосфоенолпируват.

Основным энергодающим процессом является соединение водорода, отщепляемого от распадающихся органических веществ, с вдыхаемым О2. Этот процесс представляет собой реакцию горения водорода в кислороде, протекающую со взрывом и ведущую к образованию Н2О. Однако, в живых системах происходит постепенное поэтапное освобождение энергии (не взрывообразно) с участием компонентов ДЦ, локализованных во внутренней мембране митохондрий.

Окислительное фосфорилирование (ОФ) – синтез АТФ путем фосфорилирования АДФ за счет энергии трансмембранного электрохимического протонного потенциала (▵μН+), возникающего при движении 2-х электронов по компонентам дыхательной цепи от восстановленных НАДНН+ и ФАДН2 к О2, который является конечным акцептором водорода, отщепляемого от окисляемых субстратов.

Трансмембранный электрохимический протонный потенциал ( ▵μН+ ) – это градиент концентрации ионов водорода и электрических зарядов по обе стороны внутренней мембраны митохондрий. Этот потенциал складывается из разности электрических зарядов, равной 0,2 В, и концентрационного градиента ионов водорода = 0,05В, и т.о. общая величина (▵μН+) составляет 0,25В. Возникает (▵μН+) путем перекачки ионов водорода из матрикса митохондрий в межмембранное пространство (между внутренней и внешней мембранами митохондрий), при этом внешняя поверхность внутренней мембраны заряжается положительно за счет↑[Н+]. В дальнейшем протоны возвращаются в матрикс митохондрий, проходя по протонному каналу0-субъединица) сопрягающего устройства дыхательной цепи, и при этом энергия мембранного потенциала аккумулируется в синтезируемых молекулах АТФ при участии АТФ-синтазы1-субъединица сопрягающего устройства), а активированный кислород соединяется с протонами из матрикса, образуя эндогенную воду. В точках сопряжения окисления с фосфорилированием в межмембранное пространство поступает 2-4 протона. Избыточная величина (▵μН+), сверх необходимой для синтеза АТФ, нужна для обеспечения энергией транспорта ПВК из цитоплазмы в МХ, а АТФ, наоборот, из МХ в ЦТ.

Сопряжение окисления с фосфорилированием – это превращение энергии 2е- окисленного S, проходящих по дыхательной цепи к О2, в промежуточную форму - (▵μН+), с последующим использованием ее для синтеза АТФ. В ДЦ выделяют 3 точки сопряжения (это участки ДЦ, в которых генерируется (▵μН+): 1 – при переходе 2е- от НАДНН+ на ФМН и затем на КоQ; 2 - при переходе 2е- с КоQН2 на цитохром с1, 3 – при переходе 2е- от цитохрома а, через цитохром а3 к О2. При этом 2е- от восстановленной НАДНН+ проходят 3 точки сопряжения (полная ДЦ), что сопровождается переносом в межмембранное пространство 10 протонов и это обеспечивает синтез 2,5 АТФ (при синтезе 1 АТФ расходуется 4 протона: 3 из которых использует АТФ-синтаза для синтеза каждой молекулы АТФ и 1 протон – используется в качестве источника энергии для переноса АТФ из МХ в ЦТ): т.о., 10/4 = 2,5 АТФ), а 2е- от ФАДН2 проходят 2 точки сопряжения (укороченная ДЦ), что сопровождается переносом 6 протонов и синтезом 1,5 АТФ (6/4 = 1,5 АТФ).

Компоненты ДЦ митохондрий: ФМН-зависимая НАДНН+-дегидрогеназа, железо-серные белки, убихинон (КоQ), цитохром b, цитохром с1, цитохром с, цитохромоксидаза, включающая в себя цитохром а и а3. Завершает ДЦ сопрягающее устройство, состоящее из 2-х субъединиц: Но (протонный канал –состоит из 2а, 2в - субъединиц, формирующих протонный канал и 12с – субъединиц, которые при прохождении 3-х протонов поворачиваются на 1200 и синтезируется 1молекула АТФ) и Н1 (АТФ-синтаза – состоит из 3α, 3β, попеременно расположенных и непосредственно катализизирующих реакцию фосфорилирования АДФ с образованием АТФ, а также γ – вращающийся стержень, который через δ–субъединицу влияет на конформацию α, β–субъединиц головки АТФ-синтазы, а через ε–субъединицы соединен с протонным каналом). Последовательность расположения компонентов ДЦ зависит от величины окислительно-восстановительного потенциала (редокс-потенциала), который характеризует выраженность окислительной (или восстановительной) способности компонентов: чем отрицательнее редокс-потенциал, тем сильнее восстанавливающая способность, т.е. способность отдавать е- (так, редокс-потенциал НАДНН+ = -0,32В), и тем большей энергией обладают эти е-, а чем больше окислительная способность, тем больше способность принимать е- и этой способностью в ДЦ обладает кислород (его редокс-потенциал имеет наибольшую величину (0,816В). Общая разность редокс-потенциалов в ДЦ достигает 1,2В, что соответствует освобождению 220 кДж энергии (или 52,7 ккал/моль водорода). Т.о., перенос электронов от восстановленных коферментов НАДНН+ и ФАДН2 через компоненты ДЦ на О2 является экзергоническим процессом, а синтез АТФ за счет фосфорилирования АДФэндергоническим.

Коэффициент фосфорилирования (Р/О) – это отношение количества израсходованного на синтез АТФ фосфата Н3РО4 к поглощенному кислороду. Для полной ДЦ Р/О составляет 2,5, а для укороченной – 1,5.

Дыхательный контроль – зависимость интенсивности дыхания митохондрий от концентрации АДФ. За счет дыхательного контроля скорость синтеза АТФ соответствует потребностям клетки в энергии, т.е. расход АТФ и превращение его в АДФ увеличивает окисление субстратов и поглощение О2.

Разобщители окислительного фосфорилирования в ДЦ митохондрий – вещества, нарушающие аккумулирование энергии трансмембранного протонного потенциала в синтезируемых АТФ, вследствие чего энергия рассеивается в виде тепла. Разобщители, как правило, это мембранотропные липофильные вещества, переносящие протоны в матрикс митохондрий вне сопрягающего устройства (например, анион свободной жирной кислоты связывает протон на внешней стороне мембраны митохондрий и на внутренней стороне мембраны диссоциирует, отдавая протон в матрикс). Разобщающее действие при высоких концентрациях проявляют тироксин – гормон щитовидной железы, билирубин – продукт распада гема. Ингибиторы ДЦ – вещества, блокирующие определенные этапы переноса электронов: аминобарбитал (тормозит перенос е- от ФМН к убихинону); некоторые антибиотики (антимицин А – тормозит транспорт электронов от цитохрома b к цитохрому с1); цианиды, СО, сероводород (ингибиторы цитохромоксидазы) и др. У грудных детей (и зимнеспящих животных) синтезтруется термогенин в бурой жировой ткани, локализованной вдоль магистральных кровеносных сосудов, в затылочной и межлопаточных областях (цвет определяется гем-содержащими цитохромами многочисленных митохондрий в этой ткани) - выполняет функцию протонного канала вне сопрягающего устройства и разобщает окисление с фосфорилированием –энергия протонного градиента не аккумулируется в АТФ, а рассеивается в виде тепла, обеспечивая терморегуляцию у новорожденных.

Наряду с биологическим окислением, сопряженным с синтезом АТФ, выделяют свободное, несопряженное с образованием АТФ окисление. При этом кислород в тканях может использоваться для окисления веществ путем прямого взаимодействия с ними, при участии оксигеназ: 1. диоксигеназ, которые катализируют включение молекулы кислорода в субстрат: S + О2 → SО2; 2. монооксигеназ (МОГ, гидроксилаз), которые катализируют включение одного атома кислорода в субстрат, а второй атом кислорода восстанавливается с образованием воды. Для работы МОГ требуется дополнительный источник электронов, поэтому гидроксилирование субстрата является результатом сопряженной работы нескольких переносчиков электронов, образующих монооксигеназную систему. Наиболее широко в организме человека представлены системы, в состав которых входят цитохромы Р450 (гем-содержащие мембраносвязанные белки, отличаются особой полосой поглощения света с длиной волны 450нм при соединении с СО). Например, в мембранах ЭПР локализованы короткие нефосфорилирующие цепи транспорта электронов и протонов (система микросомального окисления), которые содержат НАДФНН+ -редуктазу, флавиновые коферменты (ФАД, ФМН), (возможно - железосерный белок, цитохром b5), цитохром Р450. Источником электронов в этих цепях транспорта электронов выступает НАДФНН+ (из апотомического распада глюкозы 〜50%, реакции дегидрирования в цитоплазме малата (при участии малик-фермента) и дегидрирования изоцитрата в α–кетоглутарат при участии цитозольной изоцитратдегидрогеназы), а акцептором электронов является кислород, который при участии цитохрома Р450 включается в субстрат: SН + 2е- + 2Н+ + О 2 → SОН + Н2О. Монооксигеназные системы выполняют многочисленные функции: 1. окисляют ксенобиотики (токсины, лекарственные вещества), обезвреживая их; 2. участвуют в синтезе холестерола и желчных кислот; 3. в синтезе стероидных гормонов; 4. в синтезе производных арахидоновой кислоты – эйкозаноидов (простагландинов, лейкотриенов); 5. в окислении а/к (например, окисление тирозина, триптофана).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: