Гормоны

Гормоны – органические биологически активные вещества, различные по химической природе, вырабатываемые железами внутренней секреции, поступающие в кровь и осуществляющие регуляцию обмена веществ и функций организма.

Г присущи следующие биологические признаки: 1. дистантность действия, т.е. Г регулируют обмен и функции эффекторных клеток на расстоянии, 2. строгая специфичность действия, 3. высокая биологическая активность.

Железы, выделящие Г делятся на центральные и периферические, и называются железами внутренней секреции или эндокринными железами. К центральным относятся: 1. гипоталамус – вырабатывает нейропептиды: а). либерины (7) и статины (3), которые регулируют секрецию тропных гормонов аденогипофизом: либерины (рилизинг-факторы) – активируют, статины - тормозят, б). вазопрессин и окситоцин (депонируются в задней доле гипофиза) - регулируют обмен веществ и функции периферических органов и тканей; 2. гипофиз (передняя доля) – вырабатывает а). тропные гормоны: гонадотропины (фоллитропин, лютропин, пролактин), соматотропин, кортикотропин (АКТГ), тиреотропин (ТТГ), меланотропин, б). в задней доле гипофоза депонируется вазопрессин и окситоцин. Г гипофиза регулируют образование и секрецию гормонов периферическими эндокринными железами и частично действуют на обмен веществ в периферических органах и тканях; 3. эпифиз вырабатывает: а). мелатонин – регулирует образование гонадотропинов в гипофизе, регулирует суточные биоритмы, б). адреногломерулотропин – регулирует секрецию альдостерона корой надпочечников. Периферические железы: 1. щитовидная железа: а). Т3 (трийодтиронин), Т4 (тироксин), 2). кальцитонин; 2. паращитовидные железы: а). паратгормон, б). кальцитонин; 3. поджелудочная железа: а). инсулин, б). глюкагон; 4. надпочечники - корковое вещество: а). кортикостероиды: кортикостерон, кортизол, альдостерон, эстрогены, андрогены, б). мозговое вещество: адреналин; 5. половые железы: а). семенники: андрогены (тестостерон, 5-дигидротестостерон), б). яичники: эстрогены (эстрадиол, эстрон, эстриол), гестагены (прогестерон), релаксин; 6. тимус: тимозин, тимопоэтин; 7. плацента (временная эндокринная железа во время беременности): эстрогены, гестагены, тестостерон, хорионический гонадотропин, плацентарный лактоген, тиреотропин, релаксин. Все Г периферических ЭЖ действуют на обмен веществ и функции периферических органов и тканей. Кроме Ц и П желез, эндокринной функцией обладают и другие клетки, которые выделяют БАВ, похожие по свойствам на гормоны - называются гормоноидами. Действуют, как правило, в месте своего образования и выделяются клетками, рассеянными в разных органах. Например, тучными клетками соединительной ткани вырабатываются гепарин, гистамин; клетками почек, семенных пузырьков и других органов – простагландины и другие. Выделяют следующие способы воздействия сигнальных молекул на клетки: 1. гормональное (гемокринное) – сигнальное вещество действует на клетки, расположенные далеко от источника выработки, и использует кровообращение для переноса к клеткам-мишеням; 2. паракринное – сигнальная молекула секретируется в межклеточное пространство и влияет на ряд клеток, расположенных в непосредственной близости; 3. аутокринное – высвобождаемое из клетки сигнальное вещество оказывает влияние на туже клетку, изменяя ее функциональную активность. По 2-3 способам действуют эйкозаноиды, гистамин, цитокины, гормоны ЖКТ.

По химическому строению Г делятся на: 1. белково-пептидные: Г гипоталамуса (либерины и статины - пептиды; окситоцин, вазопрессин – пептиды), гипофиза (тропные гормоны – белки, кроме кортикотропина - пептид), поджелудочной железы (глюкагон – пептид, инсулин – белок), паращитовидных желез (кальцитонин - полипептид, паратгормон – белок), щитовидной железы (кальцитонин); 2. производные аминокислот: а). из тирозина образуются адреналин (в мозговом веществе надпочечников) и Т4тироксин (в щитовидной железе); б). из триптофана образуется мелатонин (в эпифизе); 3. стероидные гормоны: кортикостероиды (в коре надпочечников) – глюкокортикоиды (кортизол), минералкортикоиды (альдостерон), половые гормоны (андро - и эстрогены); 4. эйкозаноиды (производные арахидоновой кислоты) – простагландины, тромбоксаны, простациклины, лейкотриены.

Механизмы действия гормонов: 1. мембранныйГ изменяет проницаемость мембраны для глюкозы, аминокислот, некоторых ионов, выступая как аллостерический эффектор транспортных систем мембраны; при этом изменяется обмен в клетке; редко встречается в изолированном виде. 2. мембранно-внутриклеточный (механизм проведения сигнала с участием рецепторов, связанных с G-белками, обладающими ГТФ-азной активностью) – характерен для Г, которые не проникают в клетку и поэтому влияют на обмен веществ через внутриклеточные посредники (вторичные посредники, месенджеры). Роль внутриклеточного посредника выполняют циклические нуклеотиды – цАМФ, цГМФ; ионы кальция; диацилглицерол; инозитолтрифосфат; оксид азота и другие. Примером являются А). Аденилатциклазный механизм действия водорастворимых гормонов (например, адреналин через β-адренорецептор, глюкагон, АКТГ): Г, взаимодействуя со специфическим рецептором (R) плазматической мембраны клетки-мишени, влияет на конформацию встроенного в мембрану G–белка, состоящего из 3-х субъединиц: α, β, γ, при этом происходит замещение ГДФ на ГТФ и диссоциация субъдиниц на димер - βγи α-субъединицу, соединенную с ГТФ (α - имеет ГТФ-азную активность и после гидролиза ГТФ до ГДФ действие субъединицы прекращается), что сопровождается активацией Аденилатциклазы (АЦ), которая катализирует образование из АТФцАМФвторичного посредника, активирующего в клетке цАМФ -зависимую протеинкиназу А, состоящую из 2регуляторных и 2каталитических субъединиц. При взаимодействии цАМФ с регуляторными субъединицами происходит диссоциация и освобождение каталитических субъединиц, которые фосфорилируют более 100 различных белков (по остаткам серина и треонина), в том числе факторы транскрипции, вследствие чего происходит изменение активности этих белков (ферментов). Например, фермент - киназа фосфорилазы фосфорилируясь, из неактивной переходит в активную форму и фосфорилирует гликогенфосфорилазу, превращая неактивную форму «в» в активную «а», которая, в свою очередь, катализирует ключевую реакцию распада гликогена (освобождение глюкозо-1Ф) и, соответственно, активирует процесс распада гликогена. G-белки делятся на Gs (содержат α s -субъединицу) - активирующие аденилатциклазу (выше описано) и Gi (содержат α i -субъединицу) – ингибирующие, соответственно, образование цАМФ. Например, а). адреналин через α2–адренорептор, который связан с Gi -белком, ↓-ет уровень цАМФ, б). соматостатин, взаимодействуя со своим рецептором, также активирует Gi –белок, который ингибирует аденилатциклазу и ↓ уровень цАМФ (т.о. соматостатин уравновешивает эффекты глюкагона); в). в жировой ткани простагландин Е1 ингибирует аденилатциклазу, снижая уровень цАМФ, и замедляет мобилизацию запасов липидов, вызываемую адреналином и глюкагоном. Б). Гуанилатциклазный механизм: в качестве вторичного посредника выступает цГМФ, который образуется из ГТФ при участии гуанилатциклазы (ГЦ), которая является цитозольным доменом рецептора (относится к группе рецепторов, которые сами обладают ферментативной активностью, и, взаимодействуя с Г, рецептор активируется и проявляет каталитическую активность, фосфорилируя другие ферменты или белки с другими функциями). Существует 2 изофермента ГЦ: 1-й тип активируется внеклеточными лигандами, например предсердным натрийуретическим фактором (ПНФ)в клетках почечных собирательных трубочек и гладкомышечных клетках кровеносных сосудов. Вырабатываемый вторичный посредник цГМФ активирует цГМФ-зависимую протеинкиназу G, участвующую в фосфорилировании других белков в клетке (например, фосфорилируется фосфодиэстераза,котораягидролизует цАМФ, ингибируя тем самым эффекты данного посредника), или влияет на транспорт ионов и воды. Так, в почках придействии ПНФ: ↑экскреция натрия и воды →↓объем крови и ↓ давление; происходит расслабление сердечной мышцы. 2-й тип – растворимая цитозольная гем -содержащая ГЦ, которая активируется внутриклеточным оксидом азота (): образуется из аргинина Са2+ -зависимой -синтазой, присутствующей во многих тканях, включая мышечные клетки сердца и кровеносных сосудов. Оксид азота легко распространяется путем дифуфузии в клетки-мишени, в которых связывается с гемом ГЦ и активирует образование цГМФ. В сердце цГМФ вызывает расслабление сердечной мышцы и снижение силы сердечных сокращений, стимулируя ионные насосы, удаляющие кальций из цитозоля (так действует нитроглицерин и другие нитровазодилататоры).

В). Фосфоинозитоловый механизм: Г, взаимодействуя со специфическим R, активирует G-белок, который взаимодействует с ГТФ и активирует связанную с мембраной фосфолипазу С, превращающую фосфатидилинозитол-4,5-дифосфат в два продукта, выполняющих функцию посредниковИФ (инозитол-1,4,5-фосфат) и ДАГ (диацилглицерол): ИФ активирует освобождение кальция из ЭПР, который связывается с кальмодулином – специфическим Са2+ -связывающим белком, и далее комплекс Са2+-кальмодулин активирует соответствующие протеинкиназы, а ДАГ – остается в плазматической мембране и а). активирует протеинкиназу С фосфорилирующую ряд белков с различными функциями в клетке-мишени или б). ДАГ гидролизуется с освобождением арахидоновой кислоты, из которой образуются различные эйкозаноиды. При низком внутриклеточном уровне Са2+ и отсутствии ДАГпротеинкиназа С неактивна и, наоборот: ДАГ, связываясь с протеинкиназой С вызывает изменение ее конформации, что сопровождается повышением сродства фермента к ионам кальция и липидам. Это приводит к связыванию протеинкиназыС с плазматической мембраной и переводу фермента в активное состояние. Протеинкиназа, активированная ДАГ и Са2+, фосфорилирует специфические сериновые или треониновые остатки различных белков-мишеней в разных клетках.

3. цитозольный механизм – характерен для Г, способных проникать через липидный слой мембраны - липофильные стероидные гормоны. Механизм: Г проникает внутрь клетки и соединяется со специфическим рецептором, в комплексе с которым проникает в ядро и влияет на активность определенных генов, регулируя синтез ферментов (белков), и изменяет тем самым обмен веществ и функции клеток. Т3 и Т4 по липофильности занимают промежуточное положение между стероидами и водорастворимыми гормонами, поэтому они обладают смешанным действием, т.е. и мембранно-внутриклеточным, и цитозольным.

Существуют рецепторы со свойствами тирозин-специфичной протеинкиназы, которые аутофосфорилируются и катализируют фосфорилирование специальных белков цитозоля. Примером является рецептор для инсулина: инсулин, взаимодействуя с рецептором, вызывает активирование его киназного домена, который катализирует аутофосфорилирование по тирозину, что приводит к фосфорилированию других внутриклеточных белков, названных субстратами инсулинового рецептора, с которыми через фосфотирозин посредством специальных SН2 и SН3 -доменов соединяются специальные цитозольные белки, которые активируют специфические протеинкиназы, фосфорилирующие определенные ферменты и факторы транскрипции (фосфолипазу А 2, рибосомальную киназу, другие), что является основой многочисленных эффектов инсулина. В частности, активирует, фосфорилируя, протеинфосфатазу, связанную с гранулами гликогена, которая дефосфорилирует гликогенсинтетазу, активируя ее → ускоряется синтез гликогена, а также дефосфорилирует гликогенфосфорилазу и при этом она инактивируется → прекращается мобилизация гликогена. В адипоцитах инсулин по ФИ механизму активирует ФИ-зависимую протеинкиназуВ →↓ уровнь цАМФ активность гормончувствительной липазы → происходит ингибирование липолиза.

Г поджелудочной железы: в клетках островков Лангенгарса А-типа (α-клетки) образуется глюкагон (29 а/к), В-типа (β-клетки) – инсулин (51 а/к), Д-типа – соматостатин (совокупность пептидов из 14 и 28 а/к) - (↓секрецию глюкагона, соматотропина, инсулина), РР-типа – панкреатический пептид (из 36 а/к) (стимулирует выделение ферментов слизистой желудка и панкреатических энзимов, тормозит перистальтику кишечника и расслабляет желчный пузырь). Механизм и эффекты действия глюкагона: секреция глюкагона ↓-ся глюкозой и соматостатином и ↑-ся при ↑ концентрации Са2+ и аргинина в крови. Мишенями для глюкагона являются печень, жировая ткань, мышцы. Глюкагон, активируя аденилатциклазу, вызывает мобилизацию гликогена в печени и мышцах, мобилизацию жиров в жировой ткани → и как следствие: уровень глюкозы, жирных кислот, глицерина. В печени глюкагон синтез белков и активирует их катаболизм, высвобождаемые при этом а/к используются в глюконеогенезе уровень глюкозы в крови.

Инсулин - состоит из А-цепи, включающей 21 а/к и В-цепи – 30 а/к, соединенных между собой двумя дисульфидными связями, и в пределах А-цепи имеется еще один дисульфидный мостик (между 6 и 11 а/к). Эффекты действия инсулина (механизм см. выше): ↓ гликогенолиз, глюконеогенез, липолиз, образование кетоновых тел. А ↑ синтез гликогена, липогенез, синтез белка. В целом, действие инсулина на обмен веществ характеризуется как анаболическое, сопровождающееся положительным азотистым балансом. В крови уровень глюкозы, жирных кислот, глицерина, аминокислот, ионов К+, и потеря а/к и ионов К+ с мочой.

Секрецию инсулина ↑-ет глюкоза и Са2+, аргинин и лейцин, соматотропин, а ↓секрецию – глюкагон и соматостатин. К инсулин-чуствительным тканям относятся мышечная, жировая, соединительная ткани, печень. По мембранному механизму инсулин ускоряет транспорт внутрь клеток глюкозы, а/к, ионов К+ и Са2+. Нарушения функций поджелудочной железы: 1. инсулинома – опухоль в области β-клеток поджелудочной железы, продуцирующая ↑ инсулина → гипогликемия, обмороки, судороги. 2. Сахарный диабет: 1). инсулинзависимый сахарный диабет I типа (ИЗСД) - ↓ инсулина вследствие ↓ его образования и секреции β–клетками (истинная недостаточность инсулина – аутоиимуное заболевание, сопровождающееся образованием аутоантител к β–клеткам поджелудочной железы, обычно развивается до 40 лет, встречается 〜 у 10% больных диабетом. В крови и моче отсутствует или выявляется низкий уровень инсулина и С-пептида (из 31 а/к). С-пептид в норме освобождается из проинсулина при его созревании в инсулин и экскретируется в кровь вместе с инсулином в эквимолярных количествах, при этом период полужизни инсулина составляет только 3-10 мин., а С-пептида – 30 минут, а также печенью задерживается 2/3 инсулина и соотношение инсулин/С-пептид в крови в норме составляет 1/3, следовательно величина уровня С-пептида в крови или моче позволяет достаточно точно оценить функциональное состояние β-клеток). 2). инсулиннезависимый сахарный диабет II типа (ИНСД) - развивается обычно у людей старше 40 лет, не связан с потерей способности β-клеток секретировать инсулин, большинство больных этой формой диабета страдают ожирением). Причинами ИНСД могут быть: 1.↓плотности и аффинитета инсулин-чувствительных рецепторов на клетках-мишенях (вследствие интернализации молекул рецептора путем эндоцитоза внутрь клетки, где происходит их распад в лизосомах, или за счет ковалентной модификации рецептора – фосфорилирования по остаткам серина/треонина), 2.↓количества переносчиков глюкозы в инсулинзависимых тканях – жировой, мышечной (ГЛЮТ4 – переносчик, регулируемый инсулином), 3. высокая активность инсулиназы, расщепляющей инсулин, 4. повышение продукции контринсулярных гормонов (глюкагона, адреналина, глюкокортикоидов («стероидный» диабет), гормонов щитовидной железы («тиреоидный» диабет), гормонов аденогипофиза («гипофизарный» диабет). Симптомы: ↑ уровня глюкозы в крови - гипергликемия (норма: 3,3-5,5 ммоль/л), глюкозурия (при повышении уровня глюкозы в крови до уровня почечного порога 8-11 ммоль/л), полиурия, дегидратация, полидипсия, гипераминоацидемия, гипераминоацидурия, кетонемия, кетонурия → кетоацидоз (чаще при ИЗСД). Длительная гипергликемия приводит к неферментативному гликозилированию белков по остаткам лизина, аргинина, N-концевой а/к → изменение заряда и конформации этих белков → сопровождается нарушением их функций.: в частности, гликозилируется Нв → НвА(увеличивается в 2-3 раза, норма〜5%), кристалины хрусталика (происходит помутнение хрусталика, развивается катаракта), гликопротеины и протеогликаны базальных мембран: а). сосудов → развиваются ангипатии → поражение сосудов сердца, мозга, нижних конечностей; б). развивается базальная ретинопатия: расширение сосудов сетчатки, их хрупкость → кровоизлияния в сетчатку (частая причина слепоты при сахарном диабете); в). почечных канальцев → нефропатия → высокая протеинурия, гипоальбуминемия, отеки). При тяжелом диабете кетоз усиливается и развивается тяжелый метаболический ацидоз: ↓ рН крови → стимуляция дыхательного центра → быстрое, глубокое дыхание Куссмауля; ↓рН мочи, вследствие ↑концентрации анионов кислот, что сопровождается значительной потерей Nа+ и К+, а потери электролитов и воды ведут к дегидратации, гиповолемии, гипотонии → может привести к развитию кетоацидотической комы (тошнота, рвота, заострение черт лица, западают глаза, олигурия или анурия → заторможенность → выключение сознания, атония мышц, отсутствие рефлексов). Причиной гиперосмолярной комы может быть резкое↑уровня глюкозы в крови, что вызывает ↑ осмотического давления, приводящее к потере сознания. Механизм активации синтеза кетоновых тел (кетогенез): при ↓ инсулина ↓-ся эффективность гликолиза, но ↑ β–окисление жирных кислот → ↑ количество АцетилКоА, а оксалоацетата (ЩУК) ↓→ избыточные АцетилКоА, не окисляемые в ц. Кребса, конденсируются с образованием кетоновых тел: ацетоацетата, гидроксибутирата, ацетона.

Г щитовидной железы: секретируется 2 группы Г: 1. йодтиронины: Т3 (трийодтиронин), Т4 (тироксин) – регулируют обмен энергии и влияют на деление и дифференцировку клеток, определяя развитие организма; 2. кальцитонин – регулирует фосфорно-кальциевый обмен. Йодтиронины входят в состав тиреоглобулина – белка, содержащегося в коллоиде фолликулов ЩЖ. Этапы синтеза: 1). образование активного йода из пищевых йодидов с участием йодидпероксидазы: 2I- + Н2О2 → 2 I+ + 2Н2О, 2). йодирование тирозина в составе тиреоглобулина с участием тирозиниодиназы, с образованием моно- и дийодтирозина, 3). конденсация моно- и дийодтирозинов с образованием Т3, Т4 в молекуле тиреоглобулина, 4) поглощение тиреоглобулина из коллоида клетками эпителия, 5). Гидролиз тиреоглобулина → освобождение йодтиронинов в кровь, где происходит их связывание с тироксинсвязывающим глобулином, альбумином. В сутки у человека выделяется около 55 мкг Т3 и 110 мкг Т4, но Т3 в 3-5 раз меньше связан с белками, чем Т4 → биологический эффект Т3 в 3-5 раз >, чем Т4. Наиболее чувствительны к ЙТ ткань печени, почек, скелетные мышцы, в меньшей степени – жировая ткань и нервная ткань. Эффекты действия: 1. ЙТ влияют на энергетический обмен, что выражается в повышенном потреблении кислорода и продукции тепла (ЙТ ускоряют репликацию ДНК и активируют транскрипцию определенных генов → способствуют ↑ синтеза определенных ферментов (более 100): активируют ферменты митохондрий, ферменты челночных механизмов, ↑ количество митохондрий, в которых ↑ количество дыхательных цепей и в результате ↑ интенсивность аэробного образования энергии. 2. активируют мобилизацию энергетических ресурсов: ↑ липолиз в жировой ткани, ↑ гликогенолиз в печени и мышцах, 3. ЙТ влияют на пролиферацию клеток, их рост, дифференцировку, а на уровне всего организма влияют на его рост и правильное развитие. Нарушение функций ЩЖ: 1). Гипертиреоз: ↑-е количества ЙТ → тиреотоксикоз (базедова болезь): ↑ распад углеводов, триацилглицеридов, происходит увеличение в размерах митохондрий вследствие ↑ потребления кислорода, который требуется для быстрого сгорания глицерина и жирных кислот, со временем ↑ распад белков → потеря организмом азота (развивается отрицательный азотистый баланс). Симптомы: увеличение размеров ЩЖ (диффузный токсический зоб), ↑ температуры тела, ↓ веса, мышечная слабость, тахикардия, потливость, ↑ нервной возбудимости, экзофтальм, ↑ основного обмена. Причинами гипертиреоза могут быть: развитие опухоли, тиреоидит, избыточное поступление йодсодержащих препаратов, аутоиммунные процессы. 2). Гипотиреоз: а). кретинизм - (гипотиреоз новорожденных): умственная отсталость и ↓ физического развития, ↓tо тела и основного обмена, б). микседема у взрослых (слизистый отек): процессы роста и дифференцировки тканей завершены → наблюдается только ↓ энергообмена, ↓ tо тела, ↓частоты сердечных сокращений, некоторое ↓ памяти на недавние события, ↓ обновления эпителия кожи и слизистых (сухость), пропитывание подкожной клетчатки слизеподобным веществом, в тканях ↓ аэробное окисление углеводов, жирных кислот →↓ энергообмен., сонливость, вялость, непереносимость холода. Причиной гипотиреоза может быть: ↓поступления в организм йода (нетоксический эндемический зоб), хронический аутоиммунный тиреоидит (зоб Хашимото).

Г паращитовидных жлез: 1). кальцитонин (32а/к), 2). паратгормон (84 а/к) – оба регулируют фосфорно-кальциевый обмен: кальцитонин ↓ уровень кальция и фосфора в крови, паратгормон - ↑ кальций, но не фосфор. Нарушение функции ПЩЖ: 1. гипопаратиреоз – встречается редко и проявляется ↑ возбудимости нервно-мышечной системы (судороги, нарушения ССС) вследствие ↓ кальция в крови (гипокальциемия) и межклеточной жидкости → облегчение деполяризации мембран, вызываемой током натрия внутрь клетки. 2. гиперпаратиреоз – ↑ мобилизация кальция из костей → самопроизвольные переломы, ↑ реабсорбция кальция в почках и выведение фосфора (гиперфосфатурия, гипофосфатемия), ↑ кальция в крови (гиперкальциемия) → начинает оседать во внутренних органах и тканях → кальцификация сосудов, клапанов сердца, почек, стенок желудка, кишечника и др., снижение нервно-мышечной возбудимости → мышечная гипотония → мышечная слабость, боли в отдельных группах мышц, быстрая утомляемость.

Г надпочечников: 1. мозговое вещество – вырабатывает адреналин, норадреналин, которые накапливаются в хромаффинных клетках. Секреция адреналина ↑-ся при ↓концентрации глюкозы в крови, при стрессе. Адреналин оказывает действие, подобное глюкагону (в мышечной, жировой тканях, в печени). Адреналин действует на функции ССС: ↑силу и частоту сердечных сокращений, ↑кровяное давление; вызывает расслабление гладких мышц кишечника, бронхов, матки. Феохромоцитома – опухоль, продуцирующая ↑ адреналина →↑АД, тахикардия; выраженная гипергликемия → картина сахарного диабета. Адреналин синтезируется из тирозина через последовательное образование таких предшественников, как диоксифенилаланин (ДОФА) → дофамин → норадреналин → адреналин; в окислительном распаде катехоламинов участвуют ферменты – моноаминоксидаза (МАО), катехол-О-метилтрансфераза (КОМТ). 2. кора надпочечников – вырабатывает глюкокортикоиды (в клубочковой зоне), минералкортикоиды (в пучковой зоне), частично половые гормоны (в сетчатой зоне) из холестерола. Глюкокортикоиды: кортизол (гидрокортизон), кортикостерон – связываются с белком крови – транскортином → транспортируются в периферические ткани: печень, почки (↑-ют синтез белка), в других тканях (лимфоидная ткань селезенки, лимфоузлы, тимуса), соединительная ткань и ее производные (подкожная соединительная ткань, кости, сухожилия), жировая ткань, скелетные мышцы), наоборот, ↓синтез белка и ↑их катаболизм → происходит ↑свободных а/к и ↑-е их использования в печени и почках в глюконеогенезе →↑синтез гликогена. Глюкокортикоиды ↑ секрецию адреналина, вызывают сдвиги водно-минерального обмена: ↑ реабсорбция натрия и воды → отеки. ↓-е синтеза белка в костной ткани приводит к деминерализации отдельных участков костей → переломы, ↑кальций и фосфор в моче. Глюкокортикоиды, ↓-ая образование антител в лимфоидной ткани, ↓развитие аллергических реакций и воспаления, а ↓-ая образование коллагена в соединительной ткани, ↓-ют образование соединительнотканных рубцов в местах воспаления. Минералкортикоиды: альдостерон - адсобируется на альбуминах крови, мишенями для альдостерона является эпителий дистальных канальцев почек: ↑-ет реабсорбцию Na+ (задерживается вода) и его противоиона Сl- из мочи, одновременно происходит выделение в мочу К+. Нарушения гормональной функции надпочечников: 1). гиперфункция (гиперкортицизм): а). болезнь Иценко-Кушинга – ↑выработка АКТГ гипофизом, б). кортикостерома – ↑ продукция кортикостероидов. Симптомы: атрофия соединительной ткани, остеопороз, развитие «стероидного» диабета, гипертония, в). болезнь Конна – ↑ альдостерона → изменения водно-солевого обмена. Симптомы: отеки, ↑ кровяного давления, ↑возбудимости миокарда. 2). Гипокортицизм (болезнь Аддисона:↓выработки глюкокортикоидов. Симптомы: ↓ устойчивость человека к эмоциональным стрессам и действию повреждающих факторов (инфекции, химические, механические воздействия), гипогликемия, потеря Na+ и воды и накопление К+ → гипотония, мышечная слабость, утомляемость, ↓массы тела, гиперпигментация кожи вследствие ↑-я продукции ПОМК (проопиомеланокортина), который является общим предшественником АКТГ и меланотропного гормона (бронзовая болезнь).

Г половых желез1. мужские: андрогены – образуются клетками Лейдига (выработка активируется лютропином гипофиза), тестостерон - ↓-ет выработку лютропина по механизму обратной отрицательной связи. Сперматозоиды – выделяются семенными канальцами семенников (активируются фоллитропином гипофиза). Андрогены: ↑синтез белка (анаболический эффект) → развитие скелетной мускулатуры, развитие и минерализация эпифезарных зон роста костей; ↑ развитие мужских половых органов и развитие вторичных половых признаков по мужскому типу. 2. женские: эстрогены – эстрадиол, эстрон, эстриол -образуются в фолликулах яичников (синтез ↑–ся фоллитропином гипофиза). Эстрогены регулируют развитие органов половой сферы, обеспечивающих детородную функцию женщин; регулируют формирование вторичных половых признаков по женскому типу, протекание беременности, родового акта, лактации. Лютропин способствует развитию желтого тела и секреции прогестерона → ↑ выделение пролактина из гипофиза → ↑ развитие молочных желез.

Все стероидные гормоны синтезируются из холестерола (образуется из 18 молекул ацетилКоА, которые формируют 6 молекул мевалоновой кислоты и далее ХС) → отщепляется изокапроновый альдегид от бокового радикала ХС и образуется прегненолон и далее – прогестерон (окислен по С3, С20), который под действием стероидмоноксигеназ превращается в разные стероидные гормоны: кортизол (С21: окислен по С3, 11, 17, 20, 21-положениям), альдостерон (С21: окислен по С3, 11, 18, 20, 21-положениям), тестостерон – С17 – предшественник мужских и женских половых гормонов.

Г тимуса: тимозин, тимопоэтины I и II, тимостерин, тимусный гуморальный фактор, гомеостатический тимусный гормон – пептиды, влияющие на скорость развития и созревания предшественников лимфоидных клеток →↑деятельности иммунной системы. При ↓ функции тимуса развивается иммунная недостаточность.

Г эпифиза: мелатонин (образуется из триптофана → серотонин →мелатонин) – синтез зависит от освещенности и ↑в темноте, ↓выработку гонадотропинов гипофизом →↓половое созревание; также регулирует суточные и сезонные изменения метаболизма. (серотонин стимулирует сокращение гладкой мускулатуры, оказывает сосудосуживающий эффект, регулирует артериальное давление, дыхание, температуру тела, имеет антидепрессивное действие).

Тропные Г гипофиза: АКТГ, α, β-липотропины, гонадотропины - ↑ мобилизацию триглицеридов из жировых депо, ↑ ТАГ-липазу. α, β-Меланотропины (образуются в средней доле гипофиза), влияют на образование меланина в коже, радужке и пигментном эпителии сетчатки глаза. Соматотропин – ↑ синтез белка, стимулирует деление клеток хрящей, ↑ рост костей, ↑ массы внутренних органов, мягких тканей лица и ротовой полости, активирует выработку инсулина и ↓ глюкагона, действует на жировую и мышечную ткань подобно инсулину, стимулируют синтез ДНК и белков в клетках нервной ткани. ↓-е СТ в детском возрасте → карликовость (гипофизарный нанизм): пропорциональное уменьшение роста, отсутствие признаков умственных нарушений,↑-е СТ - гигантизм, в зрелом возрасте акромегалия – увеличение выступающих частей лица (носа, подбородка, надбровных дуг) и мягких тканей, например, языка. Вазопрессин (антидиуретический гормон) – усиливает реабсорбцию воды в почечных канальцах, стимулирует сокращение гладких мышц артериол и капилляров: ↓-е вазопрессина → несахарный диабет: ↑ объема мочи, ↓ плотности мочи, жажда. Окситоцин: ↑ сокращение гладкой мускулатуры матки, кишечника, желчного пузыря, мочевого пузыря, ↑ синтез белка в молочной железе при лактации, оказывает инсулиноподобное действие на жировую ткань.

Простагландины и лейкотриены - производные полиненасыщенной арахидоновой кислоты (С20: 5, 8, 11, 14 –тетраеновая жирная кислота), которая освобождается из фосфолипидов под действием фосфолипазы А2. В результате действия на арахидоновую кислоту липооксигеназы образуется лейкотриен А4 (ЛТА4), который является предшественником других лейкотриенов. Лейкотриены продуцируются лейкоцитами и регулируют их функции. В частности, вызывают хемотаксис гранулоцитов, стимулируют фагоцитоз. Способны влиять на клеточную проницаемость и на тонус гладких мышц. При различных аллергических заболеваниях (например, при бронхиальной астме) важную роль играет не только выделение гистамина, но и лейкотриенов. Лейкотриены обладают очень длительным воздействием на клетку. При окислении арахидоновой кислоты с участием циклооксигеназы одновременно с окислением происходит циклизация. Продуктом действия циклооксигеназы является простагландин G2 (ПГG2), который преобразуется в ПГН2, который далее в результате действия других окислительных ферментов превращается в другие простагландины (они обозначаются латинскими буквами D, E, F и т.д.). Из ПГН2 образуется также ещё 2 тромбоксана (ТХ). ПГ и ТХ называются гормонами местного действия, т.к. регулирующий эффект оказывают там же, где образуются. Простагландины влияют на проницаемость клеточных мембран, в частности, изменяют проницаемость кровеносных сосудов, влияют на тонус гладкомышечных клеток, на процессы реабсорбции в почках. Некоторые ПГ вызывают сокращение, а некоторые - расслабление мышечных элементов. Тромбоксаны регулируют функции тромбоцитов, стимулируют агрегацию тромбоцитов, ↑вязкость крови и кровяное давление, ↓ суточный диурез (аспирин ингибирует активность циклоксигеназы и в результате ↓синтез ТХ). Простациклины оказывают обртное ТХ действие.

Цитокины (интерлейкины, лимфокины, монокины, интерфероны, фактор некроза опухоли и другие) – группа гормоноподобных пептидов и белков, которые синтезируются в процессе иммунного ответа и служат медиаторами иммунной и воспалительной реакций. Обладают в основном аутокринной или паракринной активностью. Взаимодействуя с мембранными рецепторами, вызывают образование внутриклеточных посредников, с которыми связана передача сигнала в ядро, где происходит активация определенных генов и индукция синтеза белка. Участвуют в регуляции роста, дифференцировки и продолжительности жизни клеток, а также в управлении апоптозом. Апоптоз - генетически запрограммированная гибель клеток (например, трансформированных клеток при канцерогенезе, вирусной инфекции, поврежденных облучением): активируются цистеиновые протеиназы и происходят изменения клеточной мембраны (происходит отшнуровывание «апоптотических» пузырьков), распад ядра, фрагментация ДНК → измененные клетки распознаются макрофагами и быстро элиминируются. При апоптозе не развивается воспалительный процесс, в отличие от некроза клеток, который развивается в результате повреждения клеточной мембраны химическими и другими агентами →поврежденные клетки набухают, лизируются → развивается воспалительный процесс).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow