double arrow

Глюкагон и инсулин: химическая природа, механизм действия, влияние на метаболизм в тканях-мишенях


Инсулин относится к гормонам белковой природы. Он синтезируется b-клетками поджелудочной железы. Инсулин является одним из важнейших анаболических гормонов. Связывание инсулина с клетками-мишенями приводит к процессам, которые увеличивают скорость синтеза белка, а также накопление в клетках гликогена и липидов, являющихся резервом пластического и энергетического материала. Инсулин, возможно за счет своего анаболического эффекта, стимулирует рост и размножение клеток.

Молекула инсулина состоит из двух полипептидных цепей А-цепи и В-цепи. В состав А-цепи входит 21 аминокислотный остаток, в состав В-цепи 30. Эти цепи связаны между собой двумя дисульфидными мостиками: один между А7 и В7 (номера аминокислот, считая с N-концов полипептидных цепей), второй между А20 и В19. Третий дисульфидный мостик находится в цепи А, связывая А6 и А11.

Главным физиологическим стимулом выделения инсулина из b-клеток в кровь является повышение содержания глюкозы в крови.

Влияние инсулина на обмен углеводов можно охарактеризовать следующими эффектами:

1. Инсулин увеличивает проницаемость клеточных мембран для глюкозы в так называемых инсулин-зависимых тканях.




2. Инсулин активирует окислительный распад глюкозы в клетках.

3. Инсулин ингибирует распад гликогена и активирует его синтез в гепатоцитах.

4. Инсулин стимулирует превращение глюкозы в резервные триглицериды.

5. Инсулин ингибирует глюконеогенез, снижая активность некоторых ферментов глюконеогенеза.

Влияние инсулина на обмен липидов складывается из ингибирования липолиза в липоцитах за счет дефосфорилирования триацилглицероллипазы и стимуляции липогенеза.

Инсулин оказывает анаболическое действие на обмен белков: он стимулирует поступление аминокислот в клетки, стимулирует транскрипцию многих генов и стимулирует, соответственно, синтез многих белков, как внутриклеточных, так и внеклеточных.

Глюкагон представляет собой гормон полипептидной природы, выделяемый a-клетками поджелудочной железы. Основной функцией этого гормона является поддержание энергетического гомеостаза организма за счет мобилизации эндогенных энергетических рессурсов, этим объясняется его суммарный катаболический эффект.

В состав полипептидной цепи глюкагона входит 29 аминокислотных остатков, его молекулярная масса 4200, в его составе отсутствует цистеин. Глюкагон был синтезирован химическим путем, чем была окончательно подтверждена его химическая структура.

Основным местом синтеза глюкагона являются a-клетки поджелудочной железы, однако довольно большие количества этого гормона образуются и в других органах желудочно-кишечного тракта. Синтезируется глюкагон на рибосомах a-клеток в виде более длинного предшественника с молекулярной массой около 9000. В ходе процессинга происходит существенное укорочение полипептидной цепи, после чего глюкагон секретируется в кровь. В крови он находится в свободной форме. Основная часть глюкагона инактивируется в печени путем гидролитического отщепления 2 аминокислотных остатков с N-конца молекулы.



Секреция глюкагона a-клетками поджелудочной железы тормозится высоким уровнем глюкозы в крови, а также соматостатином, выделяемым D-клетками поджелудочной железы. Стимулируется секреция понижением концентрации глюкозы в крови, однако механизм этого эффекта неясен. Кроме того, секрецию глюкагона стимулируют соматотропный гормон гипофиза, аргинин и Са2+.

Механизм действия глюкагона В механизме действия глюкагона первичным является связывание со специфическими рецепторами мембраны клеток, образовавшийся глю-кагонрецепторный комплекс активирует аденилатциклазу и соответственно образование цАМФ. Последний, являясь универсальным эффектором внутриклеточных ферментов, активирует протеинкиназу, которая в свою очередь фосфорилирует киназу фосфорилазы и гликогенсинтазу.



Фосфорилирование первого фермента способствует формированию активной гликоген-фосфорилазы и соответственно распаду гликогена с образованием глюкозо-1-фосфата, в то время как фосфорилирование гликогенсинта-зы сопровождается переходом ее в неактивную форму и соответственно блокированием синтеза гликогена. Общим итогом действия глюкагона являются ускорение распада гликогена и торможение его синтеза в печени, что приводит к увеличению концентрации глюкозы в крови.

Под действием глюкагона в гепатоцитах ускоряется мобилизация гликогена с выходом глюкозы в кровь. Этот эффект гормона обусловлен активацией гликогенфосфорилазы и ингибированием гликогенсинтетазы в результате их фосфорилирования. Следует заметить, что глюкагон, в отличие от адреналина, не оказывает влияния на скорость гликогенолиза в мышцах.

Глюкагон: во-первых, он ускоряет расщепление белков в печени; во-вторых, увеличивается активность ряда ферментов, таких как фруктозо-1,6-бисфосфатаза, фосфоенолпируваткарбоксикиназа, глюкозо-6-фосфатаза. также происходит увеличение поступления глюкозы в кровь.

Глюкагон стимулирует липолиз в липоцитах, увеличивая тем самым поступление в кровь глицерола и высших жирных кислот. В печени гормон тормозит синтез жирных кислот и холестерола из ацетил-КоА, а накапливающийся ацетил-КоА используется для синтеза ацетоновых тел. Таким образом, глюкагон стимулирует кетогенез.

В почках глюкагон увеличивает клубочковую фильтрацию, по-видимому, этим объясняется наблюдаемое после введения глюкагона повышение экскреции ионов натрия, хлора, калия, фосфора и мочевой кислоты.

Регуляция водно-солевого обмена гормонами. Вазопрессин и альдостерон: строение и механизмы действия.

Гормоны — биологически активные сигнальные химические вещества, выделяемые эндокринными железами непосредственно в организме и оказывающие дистанционное сложное и многогранное воздействие на организм в целом либо на определённые органы и ткани-мишени. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах.

Существуют и другие определения, согласно которым трактовка понятия гормон более широка: «сигнальные химические вещества, вырабатываемые клетками тела и влияющие на клетки других частей тела». Это определение представляется предпочтительным, так как охватывает многие традиционно причисляемые к гормонам вещества: гормоны животных, которые лишены кровеносной системы (например, экдизоны круглых червей и др.), гормоны позвоночных, которые вырабатываются не в эндокринных железах (простагландины, эритропоэтин и др.), а также гормоны растений.

В регуляции водно-солевого обмена в организме принимают участие ряд гормонов, которые можно разделить на две основные группы: гормоны, регулирующие концентрацию ионов натрия, калия и водорода (альдостерон, ангиотензин и ренин), и гормоны, влияющие на равновесие кальция и фосфатов (паратгормон и кальцитонин).

Регуляция водно-солевого обмена происходит нервно-гормональным путём. При изменении осмотической концентрации крови возбуждаются специальные чувствительные образования (осморецепторы), информация от которых передаётся в центр, нервную систему, а от неё к задней доле гипофиза. При повышении осмотической концентрации крови увеличивается выделение антидиуретического гормона, который уменьшает выделение воды с мочой; при избытке воды в организме снижается секреция этого гормона и усиливается её выделение почками.

Постоянство объёма жидкостей тела обеспечивается особой системой регуляции, рецепторы которой реагируют на изменение кровенаполнения крупных сосудов, полостей сердца и др.; в результате рефлекторно стимулируется секреция гормонов, под влиянием которых почки изменяют выделение воды и солей натрия из организма. Наиболее важны в регуляции обмена воды гормоны вазопрессин и глюкокортикоиды, натрия — альдостерон и ангиотензин, кальция — паратиреоидный гормон и кальцитонин.

Вазопрессин, или антидиуретический гормон (АДГ) — гормон гипоталамуса, который накапливается в задней доле гипофиза (в нейрогипофизе) и оттуда секретируется в кровь. Секреция увеличивается при повышении осмолярности плазмы крови и при уменьшении объёма внеклеточной жидкости. Вазопрессин увеличивает реабсорбцию воды почкой, таким образом повышая концентрацию мочи и уменьшая её объём. Имеет также ряд эффектов на кровеносные сосуды и головной мозг. Состоит из 9 аминокислот: Cys-Tyr-Phe-Gln-Asn-Cys-Pro-(Arg или Lys)-Gly.

Альдостероносновной минералокортикостероидный гормон коры надпочечников у человека. Механизм действия альдостерона, как и всех стероидных гормонов, состоит в прямом влиянии на генетический аппарат ядра клеток со стимуляцией синтеза соответствующих РНК, активации синтеза транспортирующих катионы белков и ферментов, а также повышении проницаемости мембран для аминокислот. Основные физиологические эффекты альдостерона заключаются в поддержании водно-солевого обмена между внешней и внутренней средой организма.

Одними из главных органов-мишеней гормона являются почки, где альдостерон вызывает усиленную реабсорбцию натрия в дистальных канальцах с его задержкой в организме и повышении экскреции калия с мочой. Под влиянием альдостерона происходит задержка в организме хлоридов и воды, усиленное выделение Н-ионов и аммония, увеличивается объем циркулирующей крови, формируется сдвиг кислотно-щелочного состояния в сторону алкалоза. Действуя на клетки сосудов и тканей, гормон способствует транспорту Na+ и воды во внутриклеточное пространство.

Конечным результатом действия является увеличение объёма циркулирующей крови и повышение системного артериального давления.







Сейчас читают про: