Структура и свойства РНК

Азотистые основания в составе РНК могут образовывать водородные связи между цитозином и гуанином, аденином и урацилом, а также между гуанином и урацилом. Однако возможны и другие взаимодействия, например, несколько аденинов могут образовывать петлю, или петля, состоящая из четырёх нуклеотидов, в которой есть пара оснований аденин — гуанин.

Важная структурная особенность РНК, отличающая её от ДНК — наличие гидроксильной группы в 2' положении рибозы, которая позволяет молекуле РНК существовать в А, а не В-конформации, наиболее часто наблюдаемой у ДНК. У А-формы глубокая и узкая большая бороздка и неглубокая и широкая малая бороздка. Второе последствие наличия 2' гидроксильной группы состоит в том, что конформационно пластичные, то есть не принимающие участие в образовании двойной спирали, участки молекулы РНК могут химически атаковать другие фосфатные связи и их расщеплять.

Вторичная структура РНК-компонента теломеразы простейших.«Рабочая» форма одноцепочечной молекулы РНК, как и у белков, часто обладает третичной структурой.

Третичная структура образуется на основе элементов вторичной структуры, образуемой с помощью водородных связей внутри одной молекулы. Различают несколько типов элементов вторичной структуры — стебель-петли, петли и псевдоузлы.

Примером зависимости функции молекул РНК от их вторичной структуры являются участки внутренней посадки рибосомы (IRES). IRES — структура на 5' конце информационной РНК, которая обеспечивает присоединение рибосомы в обход обычного механизма инициации синтеза белка, требующего наличия особого модифицированного основания (кэпа) на 5' конце и белковых факторов инициации. Первоначально IRES были обнаружены в вирусных РНК, но сейчас накапливается всё больше данных о том, что клеточные мРНК также используют IRES-зависимый механизм инициации в условиях стресса.

Многие типы РНК, например, рРНК и мяРНК в клетке функционируют в виде комплексов с белками, которые ассоциируют с молекулами РНК после их синтеза или (у эукариот) экспорта из ядра в цитоплазму. Такие РНК-белковые комплексы называются рибонуклеопротеиновыми комплексами или рибонуклеопротеидами.

Сравнение с ДНК

Между ДНК и РНК есть три основных отличия

ДНК содержит сахар дезоксирибозу, РНК — рибозу, у которой есть дополнительная, по сравнению с дезоксирибозой, гидроксильная группа. Эта группа увеличивает вероятность гидролиза молекулы, то есть уменьшает стабильность молекулы РНК.

Нуклеотид, комплементарный аденину, в РНК не тимин, как в ДНК, а урацил — неметилированная форма тимина.

ДНК существует в форме двойной спирали, состоящей из двух отдельных молекул. Молекулы РНК, в среднем, гораздо короче и преимущественно одноцепочечные.

Структурный анализ биологически активных молекул РНК, включая тРНК, рРНК, мяРНК и другие молекулы, которые не кодируют белков, показал, что они состоят не из одной длинной спирали, а из многочисленных коротких спиралей, расположенных близко друг к другу и образующих нечто, похожее на третичную структуру белка. В результате этого РНК может катализировать химические реакции, например, пептидил-трансферазный центр рибосомы, участвующий в образовании пептидной связи белков, полностью состоит из РНК

Способность молекул РНК одновременно служит как в качестве носителя информации, так и в качестве катализатора химических реакций, позволила выдвинуть гипотезу о том, что РНК была первым сложным полимером, появившимся в процессе добиологической эволюции. Эта гипотеза названа «гипотеза РНК-мира». Согласно ей, РНК на первых этапах эволюции автокатализировала синтез других молекул РНК, а затем и ДНК. На втором этапе эволюции синтезированные молекулы ДНК, как более стабильные, стали хранилищем генетической информации. Синтез белка на матрице РНК с помощью пра-рибосом, полностью состоящих из РНК, расширил свойства добиологических систем, постепенно белок заменил РНК в структурных аспектах. Из этой гипотезы делается вывод, что многие РНК, принимающие участие в синтезе белка в современных клетках, в особенности рРНК и тРНК — это реликты РНК-мира.

Репликация. Транскрипция РНК

Репликация – это многоэтапный процесс, в результате которого из каждой молекулы ДНК образуется 2 абсолютно идентичные, «дочерние» НК. Именно с деления ДНК начинается процесс деления клетки.Репликация идет полуконсервативным путем: у каждой дочерней ДНК одна из цепей – исходная (материнская), а вторая вновь образованная (дочерняя) (опыты Мезельсона и Сталя). В процессе репликации участвует ряд ферментов: расплетающие ферменты, ДНК-полимеразы, ДНК-лигазы, ДНК-зависимые РНК-полимеразы.

Этапы репликации

Деспирализация – последовательное «раскручивание» материнской ДНК по всей длине молекулы. Это происходит со скоростью 18000 оборотов в минуту. Участвует фермент гираза.Разрыв водородных связей между азотистыми основаниями полинуклеотидных цепей, при этом происходит расхождение цепей и образуется репликативная вилка. 1 и 2 этапы ускоряет АТФ-зависимый комплекс ферментов, названный хеликазой. На разделение каждой пары оснований требуется 2 АТФ. Каждая из разделенных цепей ДНК соединяется с ДНК-связывающим белком, который препятствует обратному восстановлению цепей комплементарная подстройка дНТФ к освободившимся пуриновым и пиримидиновым основаниям материнских цепей ДНК за счет водородных связей. Отщепление от дНТФ молекул пирофосфатов (РР), а выделяющаяся энергия идет на образование фосфорнодиэфирных связей между дезоксирибозами и остатками фосфорной кислоты двух рядом расположенных новых молекул дМН.. Эту стадию ускоряет ДНК-полимераза респирализация полинуклеотидных цепей.Т.о., происходит образование дочерней молекулы ДНК. Затем делится ядро, цитоплазма, другие клеточные структуры. Заканчивается процесс образованием 2-х дочерних клеток, ядра которых получили совершенно идентичные ДНК. Т.о., вся генетическая информация, хранящаяся в ДНК материнских клеток, передается в ДНК дочерних клеток. В этом заключается передача и сохранение наследственных признаков.Вторая роль ДНК заключается в кодировании первичной структуры белков, синтезируемых клеткой. При этом в синтезе специфических белков ДНК принимает косвенное, а не прямое участие. Оно состоит в том, что на ДНК происходит синтез всех РНК, которые уже непосредственно участвуют в процессе образования клеточных белков. Синтез молекул РНК называется транскрипцией.

Транскрипция.

При транскрипции идет синтез молекул РНК всех типов, т.к. на молекуле ДНК имеются участки, кодирующие первичную структуру каждого вида РНК. участок ДНК, где записана информация о строении РНК, называется транскриптон, или оперон. Транскрипция – это переписывание генетической информации с определенного оперона ДНК. Этот процесс имеет как сходства, так и различия с репликацией.

Сходства: 1) оба процесса начинаются с деспирализации ДНК; 2) после деспирализации разрываются водородные связи между азотистыми основаниями обеих цепей ДНК; 3) к освободившимся основаниям цепей строго комплементарно подстраиваются НТФ; 4) за счет разрыва макроэргических связей при отщеплении пирофосфатов идет образование водородных связей между азотистыми основаниями.

Отличия: 1) при репликации расплетается вся молекула ДНК, а при транскрипции только участок ее, соответствующий определенному транскриптону; 2) при транскрипции подстраиваются НТФ, содержащие рибозу, а вместо тимина урацил; 3) списывание информации идет только с определенного участка одной цепи ДНК; 4) после образования РНК водородные связи между азотистыми основаниями цепи ДНК и вновь синтезированной цепи РНК разрываются и последняя соскальзывает с ДНК.

Для нормального функционирования любой РНК необходимо, чтобы ее первичная структура состояла только из участков, списанных с экзонов ДНК.Первоначально образованные РНК еще незрелые и называются пре-м-РНК, пре-т-РНК, пре-р-РНК. Эти пре-РНК подвергаются процессингу, созреванию. Вначале с участием специальных ферментов вырезаются «молчащие» участки, а затем информативные участки «сшиваются», образуя целую полинуклеотидную цепь. «Сшивание» называется сплайсингом. Последующие превращения специфичны для каждого вида РНК.Для м-РНК – это кэпирование или «надевание шапочки», т.е присоединение к начальному концу (к 5’) участку 7-метилгуанозина через три остатка фосфорной кислоты, это «голова» м-РНК. К конечному участку (к 3’) присоединяется полиаденилат (состоит из 100-200 остатков АМФ), образуется «хвост» м-РНК. Такая маркировка необходима для обозначения направления считывания информации в процессе биосинтеза белка.

Для т-РНК. После освобождения от неинформативных участков в т-РНК происходит модификация оснований – появляются минорные основания (в результате метилирования и др. реакций).

Для р-РНК. Происходит также метилирование некоторых оснований.

Все типы зрелых РНК затем соединяются с белком, который защищает их от разрушения, улучшает транспортировку в цитоплазму.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: