Неразъемные соединения

Заклепочное соединение применяют для листовых металлических деталей, когда требуется обеспечить его высо­кую механическую прочность. Заклепки изготавливают из мягкой стали (СтЗ, Ст5, Ст10) для соединения стальных деталей конструкции с высокой меха­нической прочностью, а из латуни – для низкого электрического сопротив­ления и достаточной механической прочности. Эти металлы подвергаются коррозии, поэтому после выполнения соединения заклепки покрывают ла­ком или краской. Для деталей малой массы в ВЧ- и СВЧ-цепях применяют медные заклепки Ml, M2, а для не­ответственных деталей с малой мас­сой – из алюминия марок А1 и А2. Заклепки имеют полукруглую, потай­ную или полупотайную головку.

Замыкающую головку заклепки об­разуют ударами специальной обжимки по стержню заклепки, которая с про­тивоположной стороны опирается на специальную поддержку – наковаль­ню (рис. 4.6, а). Наковальня должна иметь лунку по форме закладной го­ловки, ее масса в 4-5 раз больше массы молотка.

Рис.4.6. Соединение расклепыванием (а) и развальцовкой (б)

1,3 – детали; 2 – закладная деталь.

Механизация клепки осуществляет­ся высокопроизводительными вибра­ционными или соленоидными пресса­ми, пневматическими приспособле­ниями с усилием 1-5 кН. Контроль качества соединения осуществляют наружным осмотром, при котором об­ращается внимание на правильность формы головки и точность прилега­ния к листам.

Соотношения при расклепывании деталей:

d1 = (1,5-1,7) d0, l = (h1 + h2) +3 d0

Усилие расклепывания:

P = (2,0-2,5) σвS

где σв – предел прочности материала заклепки на растяжение;

S – площадь соединения.

Для расклепывания в мелкосерий­ном производстве применяются нако­вальни или молотки (массой 200-500 г), в серийном – пневматическая расклепочная оснастка с усилием 1-5 кН, в случае повышенной прочно­сти – кривошипно-шатунные либо вибропрессы с усилием несколько тонн. Виды и причины брака при клепке листов приведены в табл. 4.1.

Таблица 4.1. Виды и причины брака при клепке листов.

Виды брака Эскиз Причины брака
  Изгиб стержня в отверстии Прогиб материала Смещение закладной головки Изгиб замыкающей головки Неполная замыкающая головка Расклепывание стержня между деталями Перекос замыкающей головки     Диаметр отверстия чрезмерно большой. Диаметр отверстия мал Отверстия в деталях не совпадают Очень длинный стержень заклепки, подтяжка установлена неерпендикулярно. Очень короткий стержень заклепки, мала лунка в обжимке или закладная головка отошла при клепке. Детали не уплотнены натяжкой. Неперпендикулярно установлены обжимка и поддержка

Развальцовка применяется для со­единения металлических и неметалли­ческих деталей, например разъема с печатной платой. Она характеризуется меньшим усилием образования соеди­нения за счет применения пустотелой заклепки, так называемого пистона, имеющего вид трубки, развальцован­ной с одной стороны (рис.4.6, б). Пис­тоны изготавливают из алюминия, ла­туни, стали и красной меди.

Усилие развальцовки:

P = σвS

где:

Соединения пластической деформа­цией образуются путем деформации элементов крепления деталей либо зачеканки одной детали в другую (на­пример, сборка роторной секции кон­денсатора переменной емкости). Этот процесс отличается высокой произво­дительностью, не требует специаль­ных деталей, однако не рекомендуется при значительных механических на­грузках.

Запрессовка обеспечивается необхо­димым натягом при условии, что диа­метр охватывающей детали меньше диаметра охватываемой детали. Для мелких деталей усилие создают молот­ком, для больших – с помощью прес­са. Для соединения металлических деталей применяют посадки: глухую, тугую, напряженную. Усилие запрессовки зависит от разности диа­метров, формы и чистоты поверхно­сти соприкасающихся деталей. Иногда для обеспечения запрессовки одну из деталей нагревают.

Опрессовка (армирование) заключа­ется в образовании соединения ме­таллической и неметаллической дета­лей путем литья под давлением либо опрессовкой реактопластам (Т = 160- 220 °С, Р = 2-5 МПа).

Склеивание это технологический процесс соединения деталей с помо­щью специ-альных связующих мате­риалов, которые вследствие взаимо­действия с поверхностью деталей и изменения своего физического со­стояния способны формировать проч­ные соединения. Соединение склеива­нием является результатом проявле­ния сил адгезии, аутогезии и когезии. Адгезией называется явление сцеп­ления двух разнородных материалов при их контакте, которое возникает в результате проявления сил молекуляр­ного взаимодействия клея и соединяе­мой поверхности. Аутогезией называ­ется явление сцепления поверхностей однородных материалов (самослипа­ние). Когезия явление сцепления молекул склеивающего материала в объеме тела. В пленке клея наблюда ется образование прочных молекуляр­ных цепей от границы раздела фаз в глубь полимера, что повышает проч­ность клеевого шва.

Общая схема развития сцепления при склеивании включает следующие процессы: адсорбция – адгезия – смачивание – поверхностные химиче­ские реакции.

Адсорбция есть явление концентрации молекул полимера из раствора вблизи поверхности субстра­та (подложки) под действием молеку­лярных сил. Различают два вида ад­сорбции: физическую и химическую.

Физическая адсорбция вызывается сила­ми Ван-дер-Ваальса и почти не требует энергии активации. Поскольку энер­гия связи при физической адсорбции мала, то этот процесс обратим и энергетическое со­стояние адсорбированных молекул ма­ло отличается от свободных. Взаимодействие молекул адгезива и субстрата происходит в результате полярных, индукционных и дисперсионных сил.

Индукционные силы возникают в результате взаимодействия постоянного диполя с неполярными молекула­ми. Дисперсионное взаимодействие свойственно всем молекулам и обусловлено смещением центров положительных и отрицательных зарядов относительно

среднего положения в отдельные мгновения.

Химическая адсорбция протекает со значительным тепловым эффектом и требует заметной энергии активации. При этом проис­ходит изменение электронной струк­туры

взаимодействующих молекул.

Процесс склеивания состоит из не­скольких стадий. На первой стадии образования соединения в результате броуновского движения молекул в адгезиве и адсорбции молекул адгезива происходит накапливание молекул клеящего вещества у поверхности суб­страта. Перемещение молекул адгези­ва интенсифицируется давлением и нагревом. На второй стадии, когда расстояние между молекулами клея и субстрата станет менее 5 нм, начина­ют действовать межмолекулярные си­лы адгезии, приводящие к образова­нию различных связей типа диполь-диполь, диполь-наведенный диполь. Связи между молекулами адгезива и субстрата оказываются более прочны­ми, чем взаимодействие молекул по­лимера с молекулами растворителя клея. Это значительно усиливает миграцию молекулярных цепей полиме­ра к субстрату и приводит к образова­нию большого числа точек контакта.

Работа сил адгезии между твердым телом и жидкостью определяется уравнением Дюпре:

W т.ж = γтг + γжг + γтж

где γтг, γжг, γтж – поверхностные на­тяжения на соответствующих грани­цах раздела

(рис. 4.7).

Рис. 4.7.Схема растекания капли жидкости по по­верхности твердого тела

С учетом того что соотношение сил поверхностного натяжения определя­ется равенством Юнга:

γт.г = γт,ж + γж.г Cоsθ

получим уравнение для работы сил адгезии:

W т.ж = γжг (1+ Cоsθ)

Из этого уравнения следует, что мак­симальная работа сил адгезии будет получена при Cоsθ = 1, т. е. когда угол θ = 0. В этом случае жидкость полно­стью смачивает поверхность твердого тела.

Обычно поверхность твердого тела загрязнена жировыми пленками, ко­торые в значительной мере изменяют поверхностные свойства тел. Для уве­личения работы адгезии при склеива­нии эти пленки необходимо удалять.

Прочность клеевого соединения увеличивается, если склеиваемые ма­териалы имеют разветвленные поры, что способствует диффузии молекул полимера в пограничный слой мате­риала. Тонкие пленки клея (0,1-0,2 мм) дают более надежное соедине­ние за счет прочных межмолекуляр­ных сил, чем толстые слои.

Технологический процесс склеива­ния состоит из следующих операций:

– очистка поверхностей деталей от за­грязнений;

– нанесение клея на склеиваемые поверхности;

– подсушивание нанесенного слоя клея;

– соединение склеиваемых деталей и полимеризация клея;

– контроль качества клеевых соедине­ний.

Подготовку поверхностей деталей под склеивание проводят механиче­ской обработкой (гидропескоструйной очисткой, шлифованием, зачисткой наждачной бумагой). Обезжиривание осуществляют органическими раство­рителями (трихлорэтилен, этиловый спирт и др.).

Клей наносят на склеиваемые по­верхности кистью, пульверизатором или путем окунания. Толщина клеево­го шва должна находиться в пределах от 0,1 до 0,25 мм. Подсушивание на­несенного слоя клея перед соединением деталей необходимо для удаления растворителей. Если растворитель ос­тается в клеевом слое во время сбор­ки, это может привести к образова­нию непрочных соединений. Подсуш­ка производится обычно на воздухе в течение 5-20 мин. После склеивания деталей осуществляется полимериза­ция клея при повышенных температу­ре и давлении. Так, для клеев типа БФ температура нагрева соединения доставляет 60-120 °С, давление – (1,5-8) 105 Па.

Контроль качества клеевых соеди­нений осуществляют визуальным осмотром, с помощью дефектоскопов (ультразвуковой резонансный метод), выборочным испытанием изделия на разрушение. Для многослойной систе­мы материалов наблюдаются четыре типа разрушения:

– адгезионный – полное отслаивание адгезива от субстрата (рис. 4.8, а);

– аутогезионный – разрушение по месту слипания склеиваемых поверхностей (рис. 4.8, б);

– когезионный – разрушение одного из склеиваемых материалов или са­мой клеевой пленки (рис. 4.8, в);

– смешанный – характеризуется частичным расслаиванием по месту кон­такта либо частичным разрушением адгезива или субстрата.

Рис.4.8. Типы разрушения клеевых соединений.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: