В эконометрике важную роль играют две колличественные характеристикиеи случайной переменной х: математическое ожидание и дисперсия. Ожидаемое значение Е(х) находится по формуле
Е(х)= m= 1.)
для дискретной Х; 2.)
для непрерывной х.
Подчеркнем,что Е(х) – это константа, вокруг которой рассеяны возможные значения q случайной переменной х.
Дисперсия Var(x) – это средний квадрат разброса возможных значений случайной переменной х относительно её ожидаемого значения:
Var(x) =
= E(x-m)2 = 1.)
; 2.) 
Так что Var(x) – это тоже константа, физическая размерность которой равна квадрату физической размерности значений х. Положительный квадратный корень из дисперсии
=
именуется средним квадратичным отклонением. Размерности
и х совпадают. Константа
служит характеристикой неопределенности х. Добавим, что при вычислении Var(x) удобно пользоваться формулой, вытекающей из формулы:
= E(x2) – m2 .
Из всех вышеперечисленных формул видно,что для отыскания величин m,
нужно знать закон распределения Px(q) случайной переменной х. Часто это закон неизвестен, и тогда можно оценить характеристики m,
по результатам n независимых наблюдений над х.
(х1,х2,…,хn)
В наборе каждая композиция хi - это случайная переменная с одним и тем же законом распределения Рх(q), при этом величины хi являются независимыми. Вот формулы для оценивания m,
:
M ≈
=
=

≈
=
=

С ростом количества наблюдений n точность приближенных формул возрастает.