Симметрия кристаллов

Твердые тела природы существуют в двух формах: аморфной и кристаллической. Аморфные тела представлены стеклами, смолами, пластмассами, к ним могут быть причислены также вар, битумы, воск и т.д. Кристаллические тела – большинство тел природы – пески, глины, базальты, граниты, металлы, большинство минералов природы и химических соединений. Часть из них может существовать в виде монокристаллов - тел с правильной геометрической огранкой (каменная соль, горный хрусталь, медный купорос и др.), значительная часть минералов природы - поликристаллические тела.

Результаты исследований свидетельствуют о том, что в основе структуры у аморфных тел и жидкостей лежит так называемый ближний порядок. Расположение частиц тела обнаруживает определенную тенденцию к упорядочению, тогда как структура кристаллических тел обусловлена наличием дальнего порядка. Расположение частиц тела геометрически упорядочено в пределах всего объема. Его принято отображать с помощью геометрической модели - кристаллической решетки.

Рассмотрение кристаллической структуры твердых тел убеждает, что можно произвольно выделить некоторый наименьший объем (элементарную ячейку), параллельными трансляциями которого можно получить весь кристалл. Таким образом, на первое место в структуре кристаллических тел мы поставим трансляционную симметрию.

В качестве примера рассмотрим простую элементарную ячейку (см. рис.4.2). Она определяется тремя векторами а, в, с элементарных трансляций и тремя углами a, b, g.

Рис.4.2. Задание элементарной ячейки

Другие свойства симметрии кристаллов отображаются с помощью так называемой решетки Браве.

Решётка Браве выявляет характерные элементы симметрии в расположении одинаковых и одинаково расположенных атомов. Именно этот геометрический образ характеризует симметрию кристаллов относительно операции зеркальной, осевой, центральной, зеркально-поворотной симметрий. Следует иметь в виду, что часто элемент ячейки представляется не одной решеткой Браве, а суперпозицией двух и более. Ниже (рис.4.3–4.9) представлены все возможные типы решеток Браве. Казалось бы, их может быть значительное множество. Однако это не так. Дело в том, что все операции симметрии должны быть совместны с операцией трансляционной симметрии, и это обстоятельство существенно сужает число возможных решеток, ограничивая их количество до 14 типов, объединенных в 7 пространственных групп (сингоний).

Наиболее существенным является то обстоятельство, что в кристаллах исключаются поворотные симметрии пятого порядка, а также поворотные симметрии порядка выше шестого. Исключение симметрии пятого порядка (пентагональной) представляет замечательный факт природы, который обсудим несколько позже.

Следствием симметрии кристаллов является анизотропия их свойств, другими словами, их асимметрия относительно разных направлений внутри кристалла. Поэтому все свойства кристаллов следует разделить на скалярные, которые не зависят от выбора направления, и векторные. К первым можно отнести теплоемкость, теплоту плавления, температуру плавления и т.д.; ко вторым – электропроводность, теплопроводность, механические, оптические, магнитные свойства. Мы видим, что симметрия тесно связана с асимметрией. Тела, более асимметричные по одному физическому свойств, могут оказаться более симметричными по другом.

а) б) в)

Рис.4.3. Решетки кубической системы (a=b=c; a=b=g =90o):

а) простая; б) объемноцентрированная (ОЦК);

в) гранецентрированная (ГЦК)

а) б)

Рис.4.4. Решетки тетрагональной системы (a=b¹c; a=b=g =90o):

а) простая; б) объемноцентрированная

а) б) в) г)

Рис.4.5. Решетки ромбической системы (а¹b¹с, a=b=g =90о): а) простая; б) ОЦК; в) ГЦК; г) базоцентрированная

Рис.4.6. Решетка ромбоэдрической системы

Рис.4.7. Решетки моноклинной системы (a¹b¹c; a=g =90o¹ b):

а) простая; б) базоцентрированная

Рис.4.8. Решетка триклинной системы(a¹b¹c; a¹b¹g ¹90o)

Рис. 4.9. Решетка гексогональной системы (a=b¹c; a=g =90o; b =1200)

Естественно, возникает законный вопрос: какова же природа симметрии кристаллов? Закономерному расположению частиц в кристалле соответствует минимум энергии частиц, составляющих его, а, следовательно, и состояние устойчивого равновесия. Как известно, устойчивость в диалектике мироздания играет огромную роль, формируя конкретное состояние развивающегося мира. Аморфное состояние вещества является неустойчивым, метастабильным, оно обнаруживает тенденцию к переходу в кристаллическое состояние. Таким образом, симметрия кристаллов выступает как форма, в которой неживая природа выражает тенденцию к своему самосохранению посредством фактора структурности со свойствами симметрии.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: