Симметрия пространства

Представления о симметрии пространства связаны с непосредственным мироощущением человека, которое формирует представления об эквивалентности всех инерциальных систем отчета и эквивалентности направлений в пространстве. Симметрия пространства в житейских представлениях ассоциируется с его безграничностью, неисчерпаемостью, а реализуется она в форме однородности и в форме изотропности. Однородность пространства выражает инвариантность физических явлений и процессов относительно выбора места их наблюдения. Одинаковый физический эксперимент, поставленный в одинаковых условиях, но в разных лабораториях, приведет к тождественным результатам. Таким образом, однородность пространства предлагает физическую инвариантность процессов, явлений относительно пассивного или активного параллельного переноса системы отсчета. Эквивалентность всех точек пространства предполагает, что при преобразовании , где – вектор трансляции, механические свойства любой замкнутой механической системы остаются неизменными.

Пусть материальные точки с массами m1, m2,...., mn составляют замкнутую механическую систему; – импульсы каждого из тел, составляющих эту систему; – силы, с которыми тела системы действуют на отдельное тело m1, m2 и т.д. соответственно. Вследствие однородности пространства расстояния между телами системы , относительные скорости остаются неизменными при преобразовании , а, следовательно, остаются неизменными и внутренние силы . Именно поэтому , откуда и следует известный закон сохранения импульса для замкнутой механической системы:

Сохранение импульса – отображение однородности пространства. Другой аспект симметрии пространства связан с изотропностью пространства. Это фундаментальное свойство пространства выражается в эквивалентности всех направлений в нем. Действительно, мы наблюдаем системы двойных звезд, плоскости движения которых некоторым образом ориентированы относительно плоскости эклиптики, однако физические законы, действующие во всех случаях, одни и те же.

Представим себе однородное массивное сферическое тело. Его гравитационное поле будет обладать сферической симметрией. Любые возможности движения другой материальной частицы в нем описываются одним математическим аппаратом и характерной ситуацией для такой задачи является сохранение векторной величины , называемой моментом импульса. В этом выражении – радиус-вектор частицы относительно центрального тела, – ее импульс. Сохранение момента импульса является отображением изотропности пространства.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: