Математическая модель простейшего пуассоновского потока

На практике чаще всего ограничиваются рассмотрением простейшего (пуассоновского) потока заявок.

Определение. Поток событий, обладающий свойствами ординарности, стационарности и отсутствия последействия, называется простейшим ( или стационарным пуассоновским) потоком. Для простейшего потока событий вероятность того, что на участке времени длины t наступит ровно k событий, имеет распределение Пуассона и определяется по формуле:

Р{X(t,t) = k} = ak e-a/k! (k=0, 1, 2,…),

где а = lt, l – интенсивность потока.

Физический смысл интенсивности потока событий – это среднее число событий, приходящееся на единицу времени (число заявок в единицу времени), размерность – 1/время.

Простейшим этот поток назван потому, что исследование систем, находящихся под воздействием простейших потоков, проводится самым простым образом.

Распределение интервалов между заявками для простейшего потока будет экспоненциальным (показательным) с функцией распределения и плотностью , где – интенсивность поступления заявок в СМО.

Рассмотрим основные свойства простейшего потока:

- стационарность;

- ординарность;

- отсутствие последействия.

Стационарность. Свойство стационарности проявляется в том, что вероятность попадания того или иного числа событий на участок времени зависит только от длины участка и не зависит от его расположения на оси. Другими словами, стационарность означает неизменность вероятностного режима потока событий во времени. Поток, обладающий свойством стационарности, называют стационарным. Для стационарного потока среднее число событий, воздействующих на систему в течение единицы времени, остаётся постоянным. Реальные потоки событий в экономике предприятия яв­ляются в действительности стационарными лишь на ограниченных участках времени.

Ординарность. Свойство ординарности потока присутствует, если вероятность попадания на элементарный участок времени двух и более событий пренебрежимо мала по сравнению с длиной этого участка. Свойство ординарности означает, что за малый промежуток времени практически невозможно появление более одного события. Поток, обладающий свойством ординарности, называют ор­динарным. Реальные потоки событий в различных экономических системах либо являются ординарными, либо могут быть достаточно просто приведены к ординарным.

Отсутствие последействия. Данное свойство потока состоит в том, что для любых непересекающихся участков времени количество событий, попадающих на один из них, не зависит от того, сколько событий попало на другие участки времени. Поток, обладающий свойством отсутствия последействия, называют потоком без последействия.

Поток событий, одновременно обладающий свойствами стационарности, ординарности и отсутствия последействия, называется простейшим потоком событий.

2.6. Компоненты и классификация

моделей систем массового обслуживания (СМО)

Первые задачи теории систем массового обслуживания (ТСМО) были рассмотрены сотрудниками Копенгагенской телефонной компании, датским учёным А. К. Эрлангом (1878–1929 гг.) в период между 1908 и 1922 гг. Эти задачи были вызваны к жизни стремлением упорядочить работу телефонной сети и разработать методы, позволяющие заранее повысить качество обслуживания потребителей в зависимости от числа используемых устройств. Оказалось, что ситуации, возникающие на телефонных станциях, являются типичными не только для телефонной связи. Работа аэродромов, работа морских и речных портов, магазинов, терминальных классов, радиолокационных комплексов, радиолокационных станций и т. д. и т. п. может быть описана в рамках ТСМО.

Системы массового обслуживания – это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания.

С позиции моделирования процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом. Поступив в обслуживающую систему, требование присоединяется к очереди других (ранее поступивших) требований. Канал обслуживания выбирает требование из находящихся в очереди с тем, чтобы приступить к его обслуживанию. После завершения процедуры обслуживания очередного требования канал обслуживания приступает к обслуживанию следующего требования, если таковое имеется в блоке ожидания.

Цикл функционирования системы массового обслуживания подобного рода повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередного требования после завершения обслуживания предыдущего требования происходит мгновенно, в случайные моменты времени.

Примерами систем массового обслуживания могут служить посты технического обслуживания автомобилей; любое предприятие сферы сервиса; персональные компьютеры, обслуживающие поступающие заявки или требования на решение тех или иных задач; аудиторские фирмы; отделы налоговых инспекций, занимающиеся приёмкой и проверкой текущей отчётности предприятий; телефонные станции и т. д.

Реальные системы, с которыми приходится иметь дело на практике, как правило, очень сложны и включают в себя ряд этапов (стадий) обслуживания. Причём на каждом этапе может существовать вероятность отказа в выполнении или существует ситуация приоритетного обслуживания по отношению к другим требованиям. При этом отдельные звенья обслуживания могут прекратить свою работу (для ремонта, наладки и т. д.) или могут быть подключены дополнительные средства. Могут быть такие обстоятельства, когда требования, получившие отказ, вновь возвращаются в систему (подобное может происходить в информационных системах).

Основными компонентами системы массового обслуживания любого вида являются:

- входной поток поступающих требований или заявок на обслуживание;

- дисциплина очереди;

- механизм обслуживания.

Входной поток требований. Для описания входного потока требуется задать вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание и указать количество таких требований в каждом очередном поступлении. При этом, как правило, оперируют понятием «вероятностное распределение моментов поступления требований». Здесь могут поступать как единичные, так и групповые требования (требования поступают группами в систему). В последнем случае обычно речь идёт о системе обслуживания с параллельно-групповым обслуживанием.

Дисциплина очереди – это важный компонент системы массового обслуживания, он определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:

– первым пришёл – первый обслуживаешься (FIFO);

– пришёл последним – обслуживаешься первым (LIFO);

– случайный отбор заявок (RANDOM);

– отбор заявок по критерию приоритетности (PR);

– ограничение времени ожидания момента наступления обслуживания (имеет место очередь с ограниченным временем ожидания обслуживания или количеством мест, что ассоциируется с понятием «допустимая длина очереди»).

Следует отметить, что время обслуживания заявки зависит от характера самой заявки или требований клиента, и от состояния и возможностей обслуживающей системы. В ряде случаев приходится также учитывать вероятность выхода обслуживающего прибора по истечении некоторого ограниченного интервала времени.

Структура обслуживающей системы определяется количеством и взаимным расположением каналов обслуживания (механизмов, приборов и т. п.). Cистема обслуживания может иметь не один канал обслуживания, а несколько – система такого рода способна обслуживать одновременно несколько требований. В этом случае, если все каналы обслуживания предлагают одни и те же услуги, можно утверждать, что имеет место параллельное обслуживание – многоканальная система.

Система обслуживания может состоять из нескольких разнотипных каналов обслуживания, через которые должно пройти каждое обслуживаемое требование, т. е. в обслуживающей системе процедуры обслуживания требований реализуются последовательно.

Рассмотрев основные компоненты систем обслуживания, можно утверждать, что функциональные возможности любой систе­мы массового обслуживания определяются следующими основными факторами:

- вероятностное распределение моментов поступлений заявок на обслуживание (единичных или групповых);

- вероятностное распределение времени продолжительности обслуживания;

- конфигурация обслуживающей системы (параллельное, последовательное или параллельно-последовательное обслуживание);

- количество и производительность обслуживающих каналов;

- дисциплина очереди;

- мощность источника требований.

В системах с ограниченным ожиданием может ограничиваться длина очереди, время пребывания в очереди.

В системах с неограниченным ожиданием заявка, стоявшая в очереди, ждёт обслуживание неограниченно долго, т. е. пока не подойдёт очередь.

Приведённая классификация СМО является условной. На практике чаще всего системы массового обслуживания выступают в качестве смешанных систем. Например, заявки ожидают начала обслуживания до определённого момента, после чего система начинает работать как система с отказами.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы массового обслуживания, и эффективностью её функционирования. В большинстве случаев все параметры, описывающие системы массового обслуживания, являются случайными величинами или функциями, поэтому эти системы относятся к стохастическим системам.

В качестве основных критериев эффективности функционирования систем массового обслуживания в зависимости от характера решаемой задачи могут выступать:

- вероятность немедленного обслуживания поступившей заявки;

- вероятность отказа в обслуживании поступившей заявки;

- относительная и абсолютная пропускная способность системы;

- средний процент заявок, получивших отказ в обслуживании;

- среднее время ожидания в очереди;

- средняя длина очереди;

- средний доход от функционирования системы в единицу времени.

Случайный характер потока заявок и длительности обслуживания приводит к тому, что в системе массового обслуживания происходит случайный процесс. По характеру случайного процесса, происходящего в системе массового обслуживания (СМО), различают марковские и немарковские. Независимо от характера процесса, протекающего в системе массового обслуживания, различают два основных вида СМО:

· системы с отказами, в которых заявка, поступившая в систему в момент, когда все каналы заняты, получает отказ и покидает очередь;

· системы с ожиданием (очередью), в которых заявка, поступившая в момент, когда все каналы обслуживания заняты, становится в очередь и ждет, пока не освободится один из каналов.

Для указания типа СМО используются общепринятые обозначения Кендалла – Баша: X/Y/Z/m,

где X – вид закона распределения интервалов поступления заявок;
Y – вид закона распределения времени обслуживания заявок;
Z – число каналов;

m – число мест в очереди.

В обозначениях вида закона распределения буква M соответствует экспоненциальному распределению (от слова Марковиан), буква E – распределению Эрланга, R – равномерному распределению и D – детерминированной величине.

Например, запись M/M/1 означаетодноканальную систему с экспоненциальными распределениями времени поступления и обслуживания заявок (М – марковская) без очереди.

2.7. Расчёт основных характеристик СМО

на основе использования их аналитических моделей

Рассмотрим такие СМО, в которых возможные состояния системы образуют цепь и каждое состояние, кроме исходного и последнего, связано прямой и обратной связью с двумя соседними состояниями. Такая схема процесса, протекающего в системе, называется схемой «гибели и размножения». Термин ведёт начало от биологических задач, процесс описывает изменение численности популяции.

Если в такой системе все потоки, переводящие систему из состояния в состояние пуассоновские, то процесс называется марковским случайным процессом «гибели и размножения».

Заметим, что в таких системах все состояния являются существенными, а значит, существуют финальные вероятности состояний, которые можно найти из линейной системы уравнений Эрланга.

На практике значительная часть систем (СМО) может описываться в рамках процесса «гибели и размножения».

Рассмотрим некоторые типы таких систем:

а) одноканальные с отказами (без очереди);

б) одноканальные с ограниченной очередью;

в) многоканальные с отказами (без очереди);

г) многоканальные с ограниченной очередью.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: