Необходимое и достаточное условие перпендикулярности двух векторов

Напомним определение перпендикулярных векторов на плоскости и в трехмерном пространстве.

Определение.

Два ненулевых вектора называются перпендикулярными, если угол между ними равен девяноста градусам ( радиан).

Теорема.

Для перпендикулярности двух ненулевых векторов и необходимо и достаточно, чтобы их скалярное произведение равнялось нулю, то есть, чтобы выполнялось равенство .

Доказательство.

Пусть векторы и перпендикулярны. Докажем выполнение равенства .

По определению скалярное произведение векторов равно произведению их длин на косинус угла между ними. Так как векторы и перпендикулярны, то угол между ними равен девяноста градусам, следовательно, , что и требовалось доказать.

Переходим ко второй части доказательства.

Теперь считаем, что . Докажем, что векторы и перпендикулярны.

Так как векторы и ненулевые, то из равенства следует, что . Таким образом, косинус угла между векторами и равен нулю, следовательно, угол равен , что указывает на перпендикулярность векторов и .

Итак, необходимое и достаточное условие перпендикулярности двух векторов полностью доказано.

Как же выглядит условие перпендикулярности двух векторов в координатной форме?

В разделе скалярное произведение в координатах мы показали, что для двух векторов с заданными координатами и на плоскости справедливо равенство , а для двух векторов и в пространстве . Таким образом, необходимое и достаточное условие перпендикулярности двух векторов в координатах имеет вид на плоскости, а в трехмерном пространстве .

Рассмотрим применение полученных условий на практике, для этого разберем решение нескольких примеров.

Пример.

Перпендикулярны ли векторы .

Решение.

Вычислим их скалярное произведение по координатам . Следовательно, условие перпендикулярности двух векторов на плоскости выполнено, то есть, они перпендикулярны.

Ответ:

да, векторы перпендикулярны.

Пример.

Перпендикулярны ли векторы и , где - координатные векторы прямоугольной системы координат в трехмерном пространстве.

Решение.

Векторы и имеют соответственно координаты и (при необходимости смотрите статью координаты вектора в прямоугольной системе координат). Проверим выполнение необходимого и достаточного условия перпендикулярности двух векторов:

Так как , то векторы и не перпендикулярны.

Ответ:

нет, не перпендикулярны.

Пример.

Найдите значение , при котором векторы и перпендикулярны.

Решение.

Воспользуемся условием перпендикулярности двух векторов в пространстве в координатной форме

Ответ:

векторы перпендикулярны при .

В некоторых случаях возможно ответить на вопрос о перпендикулярности двух векторов без использования необходимого и достаточного условия перпендикулярности. Например, когда известны длины всех сторон треугольника, построенного на двух векторах, то можно найти угол между векторами и посмотреть, равен ли он девяноста градусам.

Пример.

Стороны АВ, АС и ВС треугольника АВС равны соответственно 8, 6 и 10 см. Убедитесь, что векторы и перпендикулярны.

Решение.

Если векторы и перпендикулярны, то треугольник АВС – прямоугольный и его гипотенузой является сторона ВС. Тогда по теореме Пифагора должно выполняться равенство . Проверим его справедливость: .

Следовательно, АВ и АС – катеты прямоугольного треугольника АВС, поэтому, векторы и перпендикулярны.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: