Краткие теоретические сведения. Измерение электрических величин (тока, напряжения, частоты, фазы, мощности, энергии и т.д.) производят электроизмерительными приборами

Измерение электрических величин (тока, напряжения, частоты, фазы, мощности, энергии и т.д.) производят электроизмерительными приборами. В основу принципа действия приборов положен результат взаимодействия либо магнитных полей постоянного магнита и катушки, по которой протекает ток, либо двух катушек с током, либо электростатических зарядов и других факторов, способных так или иначе превратить электрическую энергию в механическую. Механическое усилие, развиваемое механизмом электроизмерительного прибора, отклоняет стрелку на угол, пропорциональный измеряемой величине, вращает диск счётчика или перемещает перо самописца по бумажной ленте, фиксируя результаты измерения.

Большое распространение получили также цифровые электроизмерительные приборы, не имеющие механических показывающих или регистрирующих устройств. Результаты измерений в них индуцируются в виде светящихся цифр на табло прибора.

Принцип действия цифровых измерительных приборов основан на преобразовании измеряемого непрерывного сигнала в электрический код, отображаемый в цифровой форме.

В общем случае цифровой прибор содержит входное устройство, аналогово-цифровой преобразователь и цифровое отсчетное устройство. Входное устройство предназначено для обеспечения большого входного сопротивления, изменения пределов измерения и определения полярности входного устройства.

Аналогово-цифровой преобразователь преобразует аналоговую величину в дискретный сигнал в виде электрического кода, пропорциональный измеряемой величине. Результат измерения регистрируется на табло цифрового отсчетного устройства.

Достоинствами цифровых приборов являются: малые погрешности измерения (0,1 – 0,001%) в широком диапазоне измеряемых сигналов, высокое быстродействие (до 500 измерений/с), выдача результатов измерений в цифровом виде, возможность документальной регистрации измеряемой информации с помощью цифропечатающих устройств и ввода её в ПЭВМ для последующей обработки.

Электрический сигнал, воспринятый цифровым датчиком, может также непосредственно восприниматься специально созданной компьютерной программой с дальнейшей машинной обработкой и представлением результатов измерений в форме табличного и графического представления на экране монитора или распечатки принтере.

Электроизмерительные приборы, предназначенные для непосредственных измерений, называют рабочими. Градуировку и поверку рабочих приборов производят по образцовым приборам. Образцовые приборы, изготовленные с наивысшей достижимой точностью, называют эталонными. Последние, в свою очередь, также подразделяются на рабочие, используемые только для поверки образцовых приборов, и государственные, хранимые в специальных учреждениях и служащие для воспроизведения и поверки рабочих.

Измерительные приборы различают по назначению, конструкции, роду измеряемой величины, условиям эксплуатации, принципу действия, классу точности и другим признакам.

В зависимости от условий эксплуатации измерительные приборы по исполнению разделяют на три группы: А − для работы в сухих отапливаемых помещениях, Б − в закрытых неотапливаемых помещениях и В − в полевых (В1) или морских (В2) условиях. По защищённости от внешних полей приборы разделяют на две категории с допускаемыми изменениями в показаниях по классам точности. Устойчивость к механическим воздействиям определена следующими категориями: обыкновенные, обыкновенные с повышенной прочностью и устойчивые к механическим воздействиям, нечувствительные к тряске (ТП), вибропрочные (ВП), тряскоустойчивые (ТН), нечувствительные к вибрациям (ВН) и ударопрочные (УП).

В зависимости от рода измеряемой величины приборы подразделяют на амперметры, вольтметры и т.д. и комбинированные, измеряющие две и более величины (например, ампервольтметры, авометры). По способу преобразования энергии измеряемой величины во вращающий момент, действующий на подвижную часть, а также по конструктивным особенностям самого измерительного механизма приборы разделяют на магнитоэлектрические, электромагнитные, термоэлектрические и другие.

Во всём многообразии электроизмерительных приборов помогает разобраться специальная система условных обозначений, наносимых на шкалу (рис. 1.1). Кроме того, на шкале указывают род измеряемой величины (V − напряжение, вольты; A − ток, амперы; W − мощность, ватты и т.п.), категорию защищённости прибора от внешних полей, год выпуска и порядковый номер серии, товарный знак (фабричная марка) завода изготовителя (табл.1.1; 1.2).

В качестве примера на рис. 1.1. дана иллюстрация внешнего вида многопредельных вольтметра (рис. 1.1. а) и миллиамперметра (рис. 1.1. б). Предел измерения задаётся кнопочным переключателем с указанием предела в единицах измеряемой величины. Вольтметр предназначен для работы в цепях постоянного тока, принцип его действия магнитоэлектрический с подвижной рамкой (табл. 1.1), рабочее положение − вертикальное, класс точности 0,5. Миллиамперметр может быть использован в цепях постоянного и однофазного переменного токов, принцип действия − электромагнитный, рабочее положение − горизонтальное, класс точности 1,0. Изоляция обоих приборов испытана при напряжении 2 кВ.


Таблица 1.1.

Условные обозначения на электроизмерительных приборах


Таблица 1.2.

Дополнительные обозначения на электроизмерительных приборах

Электроизмерительный прибор механического действия, включённый в измеряемую цепь, потребляет из неё некоторую энергию, расходуемую на перемещение (вращение) подвижных частей измерительного механизма, нагревание проводов рамки, добавочных резисторов и других вспомогательных элементов. Эта энергия называется собственным потреблением прибора. Собственное потребление − важный параметр электроизмерительного прибора: чем оно больше, тем «грубее» прибор и тем большее влияние он оказывает на режим измеряемой цепи, увеличивая погрешность измерений.

Токоведущие элементы электроизмерительного прибора рассчитаны на длительную эксплуатацию при определённых значениях тока и напряжения. При ошибочном включении в аварийной ситуации ток через прибор и напряжение могут во много раз превышать номинальное. Перегрузки опасны не столько перегревом или пробоем электрической изоляции, сколько динамическими нагрузками, вызывающими механические повреждения деталей и узлов прибора. В паспорте для каждого типа приборов указывают перегрузочную способность, которая нормируется государственным стандартом. Электрическая прочность изоляции токоведущих частей прибора имеет немаловажное значение. Существенная утечка тока через изоляцию приводит к погрешностям в измерениях и может являться причиной поражения электрическим током обслуживающего персонала. Значение синусоидального напряжения частотой 50 Гц, которое выдерживает изоляция проводников и элементов прибора в течение одной минуты, обычно указано на его шкале в киловольтах.

Чувствительность, цена деления, погрешность и входное сопротивление измерительных приборов

Есть общие для всех электроизмерительных приборов характеристики. Это такие, как чувствительность и погрешность.

Чувствительностью электроизмерительных приборов называется отношение линейного или углового перемещения указателя D j к изменению измеряемой величины D х, вызывающему это перемещение

(1.1)

Величина С = 1/ S называется ценой деления и определяет значение электрической величины, вызывающей отклонение на одно деление. Если шкала прибора имеет n делений, а A − предел шкалы (максимальное показание), то

(1.2)

Результат измерения всегда отличается от истинного значения измеряемой величины. Величина отклонения от истинного значения характеризуется погрешностью измерения. Если в качестве действительного значения измеряемой величины принимается величина, получаемая при измерении образцовым прибором, то тогда абсолютная погрешность

(1.3)

где a − показания прибора; a 0 − действительное значение измеряемой величины.

Относительная погрешность, %,

(1.4)

В большинстве случаев для характеристики точности электроизмерительных приборов пользуются приведенной погрешностью, %,

(1.5)

Где А − предел шкалы прибора (максимальное показание).

По значению приведенной погрешности приборы делят на группы по классу точности. Класс точности характеризуется числом, показывающим наименьшее допустимое значение основной приведенной погрешности.

Абсолютная погрешность может быть определена по известному классу точности из выражения (1.5). Например, класс точности 0,5 вольтметра с верхним пределом измерения 150 В означает, что его абсолютная погрешность составляет 0,75 В:

(1.6)

Согласно ГОСТу приборы делятся на восемь классов точности: 0,05; 0,1; 0,2; 0,5 − прецезионные; 1,0; 1,5; 2,5; 4,0 − технические.

Входное сопротивление прибора − это сопротивление прибора со стороны его входных зажимов. Чем больше входное сопротивление вольтметра, тем меньшее влияние оказывает прибор на измеряемую цепь и тем меньше погрешность измерений. Для амперметра − наоборот: чем меньше входное сопротивление, тем меньше погрешность. По этой причине амперметры, как правило, изготовляются с малыми внутренними сопротивлениями в расчёте, что при эксплуатации они будут включаться в цепь последовательно с нагрузкой.

Иное включение в цепь амперметра (без последовательно подсоединённой нагрузки) ведёт к мгновенному выходу прибора из строя и категорически воспрещается!!!

Принципы действия электроизмерительных приборов


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: