Сомная теория Т.-Х. Моргана

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот.

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности:

1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;

2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;

3. гены расположены в хромосомах в определенной линейной последовательности;

4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;

6. каждый вид имеет характерный только для него набор хромосом — кариотип.

Биоэлектрические явления в состоянии покоя и деятельности

Клетки. Значение биоэлектрических явлений в процессах пере-

Дачи информации на организменном и популяционном уров-

Нях.

Биоэлектрические явления (животное электричество). Начало изучения электрических явлений, возникающих в живых тканях, относится ко 2-й половине 18 в., когда было обнаружено, что некоторые рыбы (электрический скат, электрический угорь) при охоте используют электрические разряды, оглушая и обездвиживая свою добычу. Было высказано предположение, что распространение нервного импульса представляет собой течение вдоль нерва особой «электрической жидкости». В 1791 — 1792 гг. итальянские ученые Л. Гальвани и А. Вольта первые дали научное объяснение явления «животного электричества». Своими, ставшими уже классическими, опытами они достоверно установили факт существования в живом теле электрических явлений. Позже биоэлектрические явления были обнаружены и в растительных тканях.

С позиций современных представлений о биоэлектрических явлениях ясно, что все процессы жизнедеятельности неразрывно связаны с различными формами биоэлектрических явлений. В частности, биоэлектрические явления обусловливают возникновение возбуждения и его проведение по нервным волокнам, являются причиной процессов сокращения мышечных волокон скелетных, гладких и сердечных мышц, выделительной функции железистых клеток и т. д. Биоэлектрические явления лежат в основе процессов всасывания в желудочно-кишечном тракте, в основе восприятия вкуса, запаха (см. Обоняние), в основе деятельности всех анализаторов и т. д. Нет физиологического процесса в живом организме, который в той или иной форме не был бы связан с биоэлектрическими явлениями.

Но что же такое собственно биоэлектрические явления, откуда они берутся, каково их участие в процессах жизнедеятельности?

Для облегчения понимания сущности биоэлектрических явлений любой живой организм можно представить в виде сложной смеси жидкостей и различных химических соединений. Многие из этих соединений (и поступающие в организм в виде пищи, и выделенные из него в процессе обмена веществ, и промежуточные вещества, образующиеся при обмене веществ) находятся в виде положительно или отрицательно заряженных частиц — ионов. Перераспределение этих ионов и их транспорт, постоянно имеющие место в процессе жизнедеятельности,— вот причина возникновения биоэлектрических явлений. На практике все биоэлектрические явления определяют через разность электрических потенциалов между двумя точками живой ткани, которая может быть зарегистрирована специальными электрическими приборами — гальванометрами. С помощью микроэлектродов, например, можно измерить разность потенциалов между наружной и внутренней сторонами оболочки (мембраны) клетки. Эту разность потенциалов называют потенциалом покоя, или мембранным потенциалом. Наличие его обусловлено неравномерным распределением ионов (в первую очередь ионов натрия и калия) между внутренним содержимым клетки (ее цитоплазмой) и окружающей клетку средой. Величина мембранного потенциала различна: для нервной клетки она составляет 60—80 милливольт (мв), для поперечнополосатых мышечных волокон — 80—90 мв, для волокон сердечной мышцы — 90—95 мв, причем для каждого типа клетки в покое величина потенциала строго определенная и отражает интенсивность обменных процессов, протекающих в этой клетке. В возбужденной клетке регистрируется еще один вид потенциала — так называемый потенциал действия, который, в отличие от потенциала покоя, передвигается в форме волны возбуждения по поверхности клетки со скоростью до нескольких десятков метров в секунду. В каждом возбужденном участке потенциал приобретает обратный знак. Возникновение потенциала действия связано с избирательным увеличением проницаемости клеточной мембраны для ионов натрия. Существуют и другие виды потенциалов, в частности так называемый потенциал повреждения, или демаркационный потенциал. Этот вид электрической активности регистрируется между поврежденным и интактным (неповрежденным) участками ткани. Можно предположить, что его возникновение как бы стимулирует восстановительные (регенерационные) резервы клетки (ткани).

Биоэлектрические явления (по крайней мере те, которые мы только что рассмотрели) исторически возникли как способ более совершенной связи между отдельными образованиями многоклеточного организма. Действительно, фактически существуют лишь две формы «общения» между клетками. Первая — наиболее древняя — связана с химическим взаимодействием, при котором вещество, продуцируемое одной клеткой, достигает другую клетку и вызывает в ней ответную реакцию. Эти вещества мы называем медиаторами, а в том случае, когда они передаются в пределах организма на большие расстояния, их традиционно называют гормонами. Но такой способ общения не обеспечивает возможность быстрой передачи информации (например, при необходимости отдернуть руки при внезапном прикосновении к огню). Поэтому природой был выработан другой, более совершенный способ сигнализации и передачи информации — с помощью электрических импульсов, возникающих в клетке. Особенно отчетливо выражен этот способ в деятельности центральной нервной системы высших животных и человека. Живой организм является не только генератором биопотенциалов, но и проводником электрического тока, причем изменение степени электропроводности живых тканей в зависимости от их жизнедеятельности может служить показателем жизнеспособности (состояния) клеток или тканей. Особой формой биоэлектрических явлений служит так называемый электрокинетический потенциал, возникающий, например, при движении крови по кровеносным сосудам. В этом случае появляется разность потенциалов между стенкой сосуда и движущейся кровью. Величина этого потенциала изменяется при некоторых патологических состояниях, что может быть использовано в диагностических целях.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: