Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Cуть методов численного интегрирования




МЕТОДЫ ЧИСЛЕННОГО ИНТЕГРИРОВАНИЯ

1.Суть методов численного интегрирования

2.Реализация методов в MS Excel

Cуть методов численного интегрирования

Пусть функция у=f(x) (f(x)>0) непрерывна для хÎ [a,b],тогдаопределенный интеграл пропорционален площади криволинейной трапеции, образованной подынтегральной функцией на отрезке [a,b]и прямыми x=a, x=b

Идея численного интегрирования заключается в замене криволинейной трапеции фигурой, площадь которой вычисляется достаточно просто.

Разобьем отрезок [a, b] на n равных отрезков с шагом h,

x0 =a, x i+1=x i+h, yi=f(xi), i=0,1,2, ……,n-1.

Криволинейная трапеция соответственно разобьется на n элементарных криволинейных трапеций. Каждую ЭКТ заменяем фигурой, площадь которой вычисляется довольно просто и она равна Si .

Сумму площадей всех этих ЭКТ назовем интегральной суммой:

(2.1)

Формула для приближенного вычисления интеграла (ФЧИ) имеет вид:

(2.2)





Дата добавления: 2015-05-13; просмотров: 1083; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент - человек, постоянно откладывающий неизбежность... 10686 - | 7351 - или читать все...

Читайте также:

 

100.26.176.182 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.