double arrow

Классификация взрывов

Взрывы, наиболее часто встречающиеся на практике, можно разделить на две основные группы: физические и химические (см. рис. 7.2).

К физическим взрывам относят процессы, приводящие к взрыву и не сопровождающиеся химическим превращением вещества.

К химическим взрывам относят процессы, химического превращения вещества, проявляющиеся горением и характеризующиеся выделением тепловой энергии за короткий промежуток времени и в таком объеме, что образуются волны давления, распространяющиеся от источника взрыва.

Причиной случайных взрывов чаще всего являются процессы го­рения. Взрывы такого рода чаще всего происходят при хранении, транспортировке и изготовлении ВВ. Они имеют место при обращении с ВВ и взрывоопасными веществами в химической и нефтехимической промышленности; при утечках природного газа в жилых домах; при изготовлении, транспортировке и хранении легколетучих или сжиженных горючих веществ; при промывке резервуаров для хранения жидкого топлива; при изготовлении, хранении и использовании горючих пылевых систем и некоторых самовозгорающихся твердых и жидких веществ.

Рис. 7.2. Классификация взрывов, наиболее часто встречающихся на практике

При физическом взрыве высвобождающаяся энергия является внутренней энергией сжатого или сжиженного газа (более строго, сжиженного пара). Сила таких взрывов зависитот внутреннего давления, а разрушения могут быть вызваны ударной волной от расширяющегося газа или осколками разорвавшегося резервуара. В ряде аварий отмечались физические взрывы, возникающие от полного разрушения автоцистерн. В зависимости от обстоятельств части такого резервуара разлетались на сотни метров.

То же может случиться (в меньших масштабах) с переносными баллонами для газа, если такой баллон упадет и сорвется вентиль, понижающий давление. Известны многочисленные случаи таких чисто физических взрывов сосудов со сжиженными газами под давлением, не превышающим 4 МПа.

К физическим взрывам следует отнести и явление так называемой физической (или термической) детонации, которая возникает при смешении горячей и холодной жидкостей, когда температура одной из них значительно превышает температуру кипения другой (например, при выливании расплавленного железа в воду). В образовавшейся парожидкостной смеси испарение может протекать взрывным образом вследствие развивающихся процессов тонкой фрагментации капель расплава, быстрого отвода от них и перегрева холодной жидкости. Физическая детонация сопровождается образованием ударной волны с избыточным давлением в жидкой фазе, достигающим в некоторых случаях сотен мегапаскалей. Указанное явление может стать причиной крупных аварий в ядерных реакторах и на промышленных предприятиях металлургической, химической и бумажной промышленности.

Источники энергии сжатых газов (паров) в замкнутых объемах аппаратуры могут быть как внешними, так и внут­ренними. Внешние – это электрическая энергия, используе­мая для сжатия газов и нагнетания жидкостей; теплоносите­ли, в том числе электрические, обеспечивающие нагрев жидкостей и газов в замкнутых объемах аппаратуры. К внутренним источникам относится энергия экзотермиче­ских физико-химических и тепломассообменных процессов в замкнутом объеме аппаратуры, приводящая к интенсив­ному испарению жидких сред или газообразованию, росту температуры и давления без внутренних взрывных явлений.

Химические взрывы делят на объемные (см. рис. 7.3) и взрывы конденсированных ВВ. Источником химического взрываявляются быстро протекающие самоускоряющиеся экзотермические реакции взаимодействия горючих веществ с окислителями или тер­мического разложения нестабильных соединений. При не­которых обстоятельствах возможны неконтролируемые ре­акции, сопровождающиеся возрастанием давления в реак­ционном сосуде, который может полностью разрушиться, ес­ли нет предохранительного клапана. При этом могут обра­зоваться ударная волна и осколочное поле.

Рис. 7.3. Классификация объемных взрывов

Энергоносители химических взрывов могут быть твердыми, жидкими, газообразными веществами, а также аэровзвесями горючих веществ (жидких и твердых) в окис­лительной среде (часто в воздухе). Взрывы газовых смесей и аэровзвесей горючих веществ иногда называют объемны­ми взрывами. Твердые и жидкие энергоносители относятся в большинстве случаев к классу конденсированных ВВ. В состав этих веществ или их смесей вхо­дят восстановители и окислители или другие химически нест абильные соединения. При инициировании взрыва в этих веществах с огромной скоростью протекают экзотермические окислительно-восстановительные реакции или реакции термического разложения с выделением тепловой энергии(при взрывах конденсированного ВВ атомы углерода и водорода в молекулах вещества замеща­ется атомами азота).

Газообразные энергоносители представляют собой гомогенные смеси горючих газов (паров) с газообразными окислителями, такими как воздух, кислород, хлор и др., либо нестабильные газообразные соединения, такие как ацетилен, этилен (склонные к термическому разложению в отсутствии окислителей). Источником взрывов газовых смесей являются экзотермические реакции окисления горючего вещества или реакции разложения нестабильных соединений.

Двухфазные взрывоопасные аэровзвеси состоят измелкодисперсных горючих жидкостей («туманов») или твердых веществ (пыли) в окислительной среде, в основном, в воздухе. Источником энергии их взрывов также является тепло сгорания этих веществ.

Технологическая система взрывоопасна, если она обладает запасом потенциальной энергии, высвобождающейся с настолько большой скоростью, что она может генерировать воздушную ударную волну (ВУВ), способную вызвать крушения или поражения людей. Количество потенциальной энергии определяется соответствующими физико-химическими закономерностями энерговысвобождения.

Энергию взрыва парогазовых сред определяют по теплоте сгорания горючих веществ в смеси с воздухом (окислителем); конденсированных ВВ – по теплоте, выделяющейся при их детонации (реакции разложения); при физиче­ских взрывах систем со сжатыми газами и перегретыми жидкостями – по энергии адиабатического расширения па­рогазовых сред и перегрева жидкости.

Скорость высвобождения энергии в общем случае вы­ражается удельной мощностью, т. е. количеством энергии, выделяемой в единицу времени на единицу объема. При химических взрывах скорость энерговыделения можно оп­ределить по скоростям распространения детонации или пламени в газовой среде. Скорость распространения дето­нации в твердом или жидком ВВ приблизительно соответ­ствует скорости звука в веществе и находится в интервале 2.103-9.103 м/с; при газовых физических и химических взрывах волны сжатия двигаются со скоростью, близкой к скорости звука в воздухе.

Химические взрывы, вызываемые экзотермическими реакциями разложения в конденсированных ВВ или неус­тойчивых соединениях в газовой фазе, сопровождаются об­разованием (увеличением) числа моль газов. Например, при взрыве 1 кг тринитротолуола (ТНТ), являющегося вещест­вом с отрицательным кислородным балансом, образуется приблизительно 20 моль газов (паров) (0,6 – СО; 10,0 – СО2; 0,8 – Н2О; 6,0 – N2; 0,4 – NH3; 4,7 –СН3ОН; 1,0 – HCN) и 15 моль угле­рода. Большинство других бризантных ВВ (за исключением нитроглицерина) также являются веществами с отрицатель­ным кислородным балансом, т. е. числа атомов кислорода в их молекулах недостаточно для полного превращения имеющихся атомов углерода в СО2 и водорода в Н2О.Спо­собность вещества к взрывному процессу подчиняется за­конам термохимии, согласно которым, если в данной реакции сумма теплот образования продуктов меньше теплоты образования исходного соединения, то это вещество потен­циально взрывоопасно. Например, если вещество А, разла­гающееся по реакции А → B + C + D, взрывоопасно, то долж­но соблюдаться условие:

q(A) ≥ q(B) + q(C) + q(D),

где q – эн­тальпия (теплота) образования; qимеет положительные зна­чения для соединений, образующихся с поглощением тепла (эндотермические процессы) и отрицательное для соедине­ний образующихся с выделением тепла (экзотермические процессы).

Таким образом можно оценить лишь способность вещества к взрывному процессу, а энергию и мощность взрыва определяют по скорости реакции.

Источниками энергии взрывов могут быть окислительно-восстановительные химические реакции, в которых
воздух или кислород взаимодействуют с восстановителем.
Наряду с горючими газами восстановителями могут быть
мелкодисперсные горючие твердые вещества (пыли) или
диспергированные жидкости. Окислительно-восстановительные реакции в этих условиях могут проте­кать как в замкнутых, так и незамкнутых объемах с доста­точно высокими скоростями, при которых генерируются ударные волны, способные вызвать ощутимые разрушения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: