Лекция 4,5. Физические основы термодинамики

Термодинамика, как и молекулярная физика, занимается изучением физических процессов, происходящих в макроскопических системах, т.е. в телах, содержащих огромное число микрочастиц, взаимодействующих друг с другом и внешними телами.

Задачей термодинамического метода изучения состояний макроскопических систем является установление связей между непосредственно наблюдаемыми величинами, такими, как давление, объем, температура, концентрация раствора, напряженность электрического или магнитного поля, световой поток и т.д. Никакие величины, связанные с атомно-молекулярной структурой вещества (размеры атома или молекулы, их масса, количество и т.д.), не входят в рассмотрение при термодинамическом подходе к решению задач.

Термодинамический метод, не связанный с модельными представлениями, обладает большей общностью, отличается простотой и ведет, после ряда простых математических процедур, к решению целого ряда конкретных задач, не требуя никаких сведений о свойствах атомов или молекул.

Однако при термодинамическом рассмотрении остается нераскрытым внутренний (атомно-молекулярный) механизм явлений. По этой причине в термодинамике, как правило, бессмысленны вопросы “почему”? Например, почему при быстром растяжении медная проволока охлаждается, а резиновый жгут нагревается? Мы должны удовлетворить этим результатам, а механизм, ведущий к нему, остается скрытым от нас.

В основе термодинамики лежат принципы, являющиеся обобщение опытных данных: принцип температуры (часто называемый нулевым началом термодинамики), принцип энергии (I начало), принцип энтропии (II начало) и постулат Нернста (III начало термодинамики).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: