f* - план
1.

Элемент получает премию в размере А рублей, если в точности выполнит план.
2. 

Перевыполнение плана не наказывается, но и не поощряется.
3. 

Элемент поощряется за перевыполнение плана. α – норматив премирования.
4. 
Чтобы получить еще лучший результат и увеличить объем выпуска, необходимо уменьшить норматив премирования, тогда угол наклона уменьшится. Размер вознаграждения не может превышать некоторой заданной величины А.
5. 
Целевая функция элемента: f (П; У) = f* (П; У) – z (П; У).
Z – стоимостной эквивалент затрат элемента, связанный с достижением результата У.
Задача моделирования. Бригада из 2-х рабочих. Имеется плановое задание у 1 и 2 работника П1, П2.
Каждая штука продукции дает 1 рубль в фонд оплаты труда, т.о. ФОТ = х1 + х2,
х1, х2 - кол-во продукции, которое сделает 1 и 2-й рабочий.
Заработок:
. Уравнительная оплата труда. Вводим А1 и А2 – предельный объем продукции, который может выполнить 1-й и 2-й рабочий. С учетом этого строим функцию (Аi – xi) – функция комфортности труда, т.е. если х = 0, то комфортность = А1. Если рабочий будет работать, то комфортность будет = 0.
- функция удовлетворенности трудом.
Пусть план 1-го рабочего = 9, 2-го – 10. А1 = 20, А2 = 22. Какую стратегию выберет первый рабочий?

Таблица решений:
| х2\х1 | |||
| 104,5/114 | |||
| 110/110 | 105/115,5
| ||
| 103,5/115 |
Псевдо оптимальная точка
f1 = (9+10)/2(20-9) = 104.5
f2 = (9+10)/2(22-10) = 114
(9;10)- равновесная точка (10;11)- псевдо оптимальная
В числителе значение целевой функции для первого, а в знаменателе – для второго.
Псевдо оптимальная точка – в этой точке согласуются интересы центра и интересы элементов. Эта точка не является равновесной, т.к. у каждого элемента есть возможность улучшить свои возможности.
Первый рабочий решил снизить объем производства:
х2 = 11, х1 = 9

Второй, обнаружив, что у него зарплата уменьшилась, тоже уменьшит объем производства. Они вернутся в первый квадрат.
105/115,5






