Студопедия
Обратная связь

Сколько стоит твоя работа?
Тип работы:*
Тема:*
Телефон:
Электронная почта:*
Телефон и почта ТОЛЬКО для обратной связи и нигде не сохраняется.

Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram 500-летие Реформации

Устройство и принцип работы биологического нейрона

<== предыдущая статья | следующая статья ==>

 

Биологический нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро и отростки. Выделяют два вида отростков. Аксон обычно — длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов).

Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи с 20-ю тысячами других нейронов. Кора головного мозга человека содержит десятки миллиардов нейронов.

Биологический нейрон является важнейшим элементом клеток нервной системы и строительным материалом мозга. Нейроны существуют в нескольких форма, в зависимости от их назначения и дислокации, но в целом они схожи по структуре.

Рис. 12.4 Схема нейрона

Каждый нейрон является устройством обработки информации, которое получает сигналы от других нейронов через специальную структуру ввода, состоящую из дендритов. Если совокупный входной сигнал превышает пороговый уровень, то клетка передает сигнал далее в аксон, а затем в структуру вывода сигнала, от которой он передается в другие нейроны. Сигналы передается с помощью электрических волн. (В течение жизни у человека число нейронов не увеличивается, но растет число связей между ними, как результат обучения).

Органы чувств человека состоят из большого числа нейронов, соединенных между собой множеством связей. Орган чувств включает в себя рецепторы и проводящие пути. В рецепторах формируются электрохимические сигналы, распространяющиеся со скоростью от 5 до 125 метров в секунду. Рецепторы кодируют различные виды сигналов в единый универсальный частотно-импульсный код.

Число нервных импульсов в единицу времени пропорционально интенсивности воздействия. Органы чувств имеют нижние и верхние пределы чувствительности. Реакция (Е) органов чувств человека на интенсивность (Р) раздражения можно приближенно представить законом Вебера - Фехнера:

. (12.3)

Очевидно, если учесть при этом влияние шума, то можно прийти к формуле Шеннона, позволяющей оценить информационную способность такого органа чувств. Путем обучения и тренировки можно повысить разрешающую способность органов чувств. Кроме этого человек может различать сочетание частот и амплитуд, в такой степени, которая недоступна современным техническим устройствам. Но органы чувств функционируют в ограниченном диапазоне по частоте и амплитуде.

При переходе в возбужденное состояние в выходном отростке (аксоне) генерируется импульс возбуждения, распространяющийся по нему со скоростью от 1 до 100 м/с; в основе процесса распространения лежит изменение локальной проводимости мембраны аксона по отношению к ионам натрия и калия. Между нейронами нет прямых электрических связей. Перенос сигнала с аксона на входной отросток (дендрит) другого нейрона осуществляется химическим путем в специальной области – синапсе, где окончания двух нервных клеток подходят близко друг к другу. Некоторые из синапсов являются особыми, вырабатывающие сигналы обратной полярности для гашения сигналов возбуждения.

В настоящее время интенсивно изучаются и глобальные аспекты деятельности мозга – специализация его больших областей, функциональные связи между ними и т.п. В то же время мало известно, как же осуществляется обработка информации на промежуточном уровне, в участках нейронной сети, содержащей всего десятки тысяч нервных клеток.

Иногда мозг уподобляют колоссальной вычислительной машине, отличающейся от привычных компьютеров лишь существенно большим числом составляющих элементов. Считается, что каждый импульс возбуждения переносит единицу информации, а нейроны играют роль логических переключателей по аналогии с ЭВМ. Такая точка зрения ошибочна. Работа мозга основывается на совершенно иных принципах. В нем нет жесткой структуры связей между нейронами, которая была бы подобна электрической схеме ЭВМ. Надежность его отдельных элементов (нейронов) гораздо ниже, чем элементов, используемых для создания современных компьютеров. Разрушение даже таких участков, которые содержат довольно большое число нейронов, зачастую почти не влияет на эффективность обработки информации в этой области мозга. Часть нейронов отмирает при старении организма. Никакая вычислительная машина, построенная на традиционных принципах, не сможет работать при таких обширных повреждениях.

Современные ЭВМ выполняют операции последовательно, по одной операции на такт. Число извлекается из памяти, помещается в процессор, где над ним производится некоторое действие в соответствии с диктуемой программой инструкцией, и результат вновь заносится в память. Вообще говоря, при выполнении отдельной операции электрический сигнал должен пробежать по соединительным проводам определенное расстояние, что может ограничить быстродействие ЭВМ.

Например, если сигнал проходит расстояние в 30 см, то частота следования сигналов при этом не должна превышать 1 ГГц. Если операции выполняются последовательно, то предел быстродействия такой ЭВМ не превысит миллиарда операций в секунду. В действительности быстродействие, кроме того, ограничивается скоростью срабатывания отдельных элементов компьютера. Поэтому быстродействие современных ЭВМ уже довольно близко подошло к своему теоретическому пределу. Но этого быстродействия совершенно недостаточно, чтобы организовать управление сложными системами, решение задач «искусственного интеллекта» и др.

Если распространить приведенные рассуждения на человеческий мозг, то результаты будут абсурдными. Ведь скорость распространения сигналов по нервным волокнам в десятки и сотни миллионов раз меньше чем в ЭВМ. Если бы мозг работал, используя принцип современных ЭВМ, то теоретический предел его быстродействия составлял всего тысячи операций в секунду. Но этого явно недостаточно для объяснения существенно более высокой эффективности работы мозга.

Очевидно, деятельность мозга связана с параллельной обработкой информации. К настоящему времени организация параллельных вычислений уже используется в ЭВМ, например, с матричными процессорами, представляющими собой сеть из более простых процессоров, имеющих собственную память. Техника параллельного вычисления заключается в том, что элементарный процессор «знает» лишь о состоянии своего малого элемента среды. Основываясь на этой информации, каждый процессор вычисляет состояние своего элемента в следующий момент времени. При этом отсутствует ограничение быстродействия, связанное со скоростью распространения сигналов. Работа матричного процессора устойчива по отношению к локальным повреждениям.

Следующим этапом в развитие идеи параллельных вычислений явилось создание вычислительных сетей. Такое своеобразное «сообщество» компьютеров напоминает многоклеточный организм, который «живет своей жизнью». При этом функционирование вычислительной сети как сообщества компьютеров не зависит от того, как именно устроен каждый отдельный компьютер, какими процессами внутри него обеспечена обработка информации. Можно представить себе сеть, состоящую из очень большого числа примитивных компьютеров, способных выполнять всего несколько операций и хранить в своей памяти мгновенные значения нескольких величин.

С математической точки зрения подобные сети, состоящие из элементов с простым репертуаром реакций, принято рассматривать как клеточные автоматы. Мозг гораздо ближе по принципу работы и структуре к матричному процессору, чем к традиционной ЭВМ с последовательным выполнением операций. Однако существует фундаментальное различие между мозгом человека и любым параллельным компьютером. Дело в том, что нейронные сети мозга вообще не заняты никакими вычислениями. Абстрактное мышление (обращение с числами и математическими символами) вторично по отношению к фундаментальным механизмам работы мозга. Трудно себе представить, что когда, например, кошка настигает в прыжке птичку, ее мозг решает в считанные доли секунды системы нелинейных дифференциальных уравнений, описывающих траекторию прыжка и другие действия.

На эту тему можно привести следующее высказывание А. Эйнштейна: «Слова и язык, по-видимому, не играют никакой роли в моем механизме мышления. Физические сущности, которые в действительности, видимо, элементами мышления, - это определенные знаки и более или менее ясные образы, которые могут произвольно воспроизводиться и комбинироваться… Обычные слова приходиться подбирать лишь на второй стадии…».

Мозг работает как колоссальная «аналоговая» машина, где окружающий мир находит отражение в пространственно-временных структурах активности нейронов. Подобный механизм работы мозга мог естественно возникнуть в ходе биологической эволюции.

Для простейшего животного основная функция нервной системы состоит в том, чтобы преобразовать ощущения, вызываемые внешним миром, в определенную двигательную активность. На ранних стадиях эволюции связь между образом-ощущением и образом-движением является прямой, однозначной и наследственно закрепленной в исходной структуре соединений между нейронами. На более поздних стадиях эта связь усложняется, появляется способность к обучению. Образ-ощущение уже не связан жестко с планом действий. Вначале осуществляется его промежуточная обработка и сравнение с хранящимися в памяти картинами. Промежуточная обработка образов становится все более сложной по мере движения вверх по эволюционной лестнице. В конечном счете, после длительного развития, формируется процесс, называемый нами мышлением.

Для распознавания образов может быть использован принцип «клеточного автомата». Система обладает ассоциативной памятью, если при подаче на ее вход некоторой картинки она автоматически отбирает и подает на выход наиболее близкую к ней хранящуюся в памяти картину.

 

<== предыдущая статья | следующая статья ==>





 

Читайте также:

Датчики и микроактюаторы на основе MEMS-технологий

Устройство и принцип работы сканирующего туннельного микроскопа

Эффекты резонансного взаимодействия электромагнитного поля с веществом

Архитектура кантилеверных датчиков и систем контроля за положением кантилеверов

Физические основы методов рентгеноструктурного анализа

Физические основы построения измерительных устройств с использованием связанных колебаний осцилляторов

Проблема создания искусственных нейроноподобных измерительных устройств

Растровый (сканирующий) электронный микроскоп

Основы геометрической электронной оптики

Плёнки Ленгмюра-Блоджет (ЛБ - плёнки) хорошо видны в атомно-силовой микроскоп, с помощью которого удается получать

Фуллерены

MEMS-дисплеи.

Применения сверхпроводников в измерительной технике

Туннельная микроскопия.

Вернуться в оглавление: Современные фундаментальные и прикладные исследования в приборостроении

Просмотров: 5473

 
 

54.81.45.122 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.