Линеаризация физических систем

Условие линейности- линейная связь возмущения x(t) и реакции y(t)

  1. x1(t) ↔ y1(t)

x2(t) ↔ y2(t) x1(t)+x2(t)↔y1(t)+y2(t)

принцип суперпозиции.

  1. ax (t)→ay(t) –принцип гомогенности
  2. Линейная система должна удовлетворть принципам суперпозиции и гомогенности.

y=x2 (не выполняется 1 принцип)

y=mx+b (не выполняется 2 принцип)

но в окрестности р.т. х00 при ∆х, ∆у→0

х=х0+∆х, у=у0+∆у у0=mx0+b

у0+∆у= mx0+∆хm+b

∆у=m∆х

Мех. и электрические элементы линейны в достаточно широком диапазоне изменения переменных, но не гидравл. и тепл.

При условии ∆х, ∆у→0 систему можно линеаризировать.

Пусть y(t)=g{x(t)}Р.т. x0 Разложение Тейлора в окрестностях рабочей точки х 0

тогда при ∆x=(x-x0)

y-y0=m(x-x0) ∆y=m∆x

В Р.т (пол. равновесия) f0=Mg если для пел. пружины. f=y2, то

Следовательно

Пример:

T=Mgsin

. МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ЛИНЕЙНЫХ НЕПРЕРЫВНЫХ САУ

2.1. Передаточная функция

Целью рассмотрения САУ может быть решение одной из двух задач: задачи анализа или задачи синтеза. Но в любом случае порядок исследования САУ включает в себя следующие этапы: математическое описание, исследование установившихся режимов, исследование переходных режимов.

Рассмотрим случай, когда в замкнутой системе можно выделить объект О и управляющее устройство УУ, как показано на рис.2.1.

Рис.2.1

Общее уравнение САУ получается из системы уравнений объекта и управляющего устройства.

Состояние объекта характеризуется выходной величиной x(t), регулирующим воздействием y(t) и возмущением f(t). Тогда выходная величина может быть представлена функцией:

Состояние управляющего устройства характеризуется регулирующим воздействием y(t) и входным воздействием. Процессы в УУ будут описываться двумя уравнениями:

Три последних уравнения полностью описывают процессы в САУ. Если в этих уравнениях исключить переменные y(t) и, то получим дифференциальное уравнение САУ:

Это уравнение оценивает состояние системы во времени, определяет переходные процессы и обычно называется уравнением динамики.

Однако в форме дифференциальных уравнений математическое описание в теории автоматического управления обычно не применяется вследствие сложности решения таких уравнений.

Исследование САУ существенно упрощается при использовании прикладных математических методов операционного исчисления.

Возьмем некоторый элемент САУ, имеющий один вход и один выход. Дифференциальное уравнение элемента в общем случае имеет вид:

Если в уравнение (2.1) вместо функции времени xвых(t) и xвх(t) ввести функции Xвых(p) и Xвх(p) комплексного переменного р, поставив условием, что эти функции связаны зависимостями:

(2.2)

то оказывается, что дифференциальное уравнение, содержащее функции xвых(t) и xвх(t) при нулевых начальных условиях, равносильно линейному алгебраическому уравнению, содержащему функции Xвых(p) и Xвх(p):

anpnXвых(p)+an-1pn-1Xвых(p)+...+a1pXвых(p)+a0Xвых(p)=

=bmpmXвх(p)+bm-1pm-1Xвх(p)+...+b1pXвх(p)+b0Xвх(p).(2.3)

Такой переход от дифференциального уравнения к однозначно соответствующему ему алгебраическому уравнению называется преобразованием Лапласа.

Функция X(p) называется изображением функции x(t), функция x(t) называется оригиналом функции X(p).

Операция перехода от искомой функции x(t) к ее изображению X(p) (нахождение изображения от оригинала) называется прямым преобразованием Лапласа и записывается условно с помощью символа L как

L{x(t)}=X(p).

Операция перехода от изображения X(p) к искомой функции x(t) (нахождение оригинала по изображению) называется обратным преобразованием Лапласа и записывается условно с помощью символа L-1 как L-1{X(p)}=x(t).

Формально переход от дифференциального уравнения к алгебраическому относительно изображения при нулевых начальных условиях получается путем замены символов дифференцирования оригиналов функций dn/dtn, dn-1/dtn-1...,d/dt соответственно на pn,pn-1,...p и функций x(t)- их изображениями X(p). С комплексной переменной p, как и с другими членами алгебраического уравнения, можно производить различные действия: умножение, деление, вынесение за скобки и т.д.

Так как возможность однозначного перехода от дифференциального уравнения к алгебраическому значительно упрощает расчеты, то важно убедиться в правомерности такого перехода. Обозначим в исходном дифференциальном уравнении и согласно интегралу (2.2) найдем изображение:

Согласно правилу интегрирования по частям

При нулевых начальных условиях x(0)=0 и с учетом (2.2) получим:

Таким образом, операция дифференцирования оригинала соответствует операции умножения изображения этого оригинала на комплексное число p.

Так как то и т.д.

Каждый элемент САУ в общем случае описывается дифференциальным уравнением вида (2.1). Следовательно, при выводе дифференциального уравнения системы в целом необходимо совместно решить несколько дифференциальных уравнений высших порядков.

Преобразование дифференциальных уравнений по Лапласу позволяет свести эту задачу к решению системы алгебраических уравнений. Определив из алгебраических уравнений изображение X(p) искомой функции x(t), определяющей переходной процесс в системе, находят эту функцию, пользуясь таблицами оригиналов и изображений или по известным формулам обратного преобразования Лапласа.

Кроме того, преобразование дифференциального уравнения по Лапласу дает возможность ввести понятие передаточной функции.

Вынеся в уравнении (2.3) Xвых(p) и Xвх(p) за скобки, получим:

(anpn+an-1pn-1+...+a1p+a0)Xвых(p)=

=(bmpm+bm-1pm-1+...+b1p+b0)Xвх(p).

Определим из этого уравнения отношение изображения выходной величины к изображению входной: (2.4)

Отношение изображения выходной величины элемента (или системы) к изображению его входной величины при нулевых начальных условиях называется передаточной функцией элемента (или системы).Передаточная функция W(p) является функцией комплексной переменной р:

где A(p)=anpn+an-1pn-1+...+a1p+a0- полином степени n,

B(p)=bmpm+bm-1pm-1+...+b1p+b0- полином степени m.

Из определения передаточной функции следует, что:

Xвых(p)=Xвх(p)W(p).

Передаточная функция является основной формой математического описания объектов в теории автоматического управления и так как она полностью определяет динамические свойства объекта, то первоначальная задача расчета САУ сводится к определению передаточной функции.

Рассмотрим примеры по определению передаточной функций некоторых простейших схем, характерных для электроники.

Пример 1.

Вывести передаточную функцию для схемы на рис.2.2, считая входным воздействием приложенное напряжение u, а выходным - ток в цепи i.

Рис.2.2

Процессы в схеме описываются уравнением:

Перейдем к изображениям по Лапласу:

U(p)=LpI(p)+RI(p)=I(p)(Lp+1).

Составим передаточную функцию как отношение изображения выходной величины к изображению входной величины:

где k=1/R- коэффициент передачи,

T=L/R- постоянная времени.

Передаточные функции принято записывать в такой форме, чтобы свободные члены полиномов от р равнялись бы единице, что и сделано как в рассмотренном примере, так и в последующих.

Пример 2.

Вывести передаточную функцию схемы на рис.2.3, считая входной величиной напряжение u1, а выходной - u2.

Рис.2.3

При выводе передаточной функции будем считать, что цепочка не нагружена (никаких элементов к выходным зажимам не подключено, либо эти элементы имеют сопротивление, стремящееся к бесконечности) и сопротивление источника входного напряжения настолько велико, что его можно считать равным бесконечности.

(а)(б)(в)

Подставим (в) в (а):

Перейдем к изображениям:

Передаточная функция

где T=RC- постоянная времени.

Пример 3

Вывести передаточную функцию схемы на рис.2.4, а, содержащей операционный усилитель.

Рис.2.4

Операционными усилителями называются усилители постоянного тока малой мощности с большим коэффициентом усиления. В настоящее время они выполняются по интегральной технологии, т.е. в виде микросхем.

Выведем вначале передаточную функцию для типового включения операционного усилителя, показанного на рис.1, б, в общем виде.

Так как реальные микросхемы операционных усилителей имеют большой коэффициент усиления kоу и большое входное сопротивление rвх, то предположим, что и .

С учетом принятых допущений напряжение между инвертирующим и неинвертирующим входами операционного усилителя

Отсюда следует, что напряжение на входе “-“ (инвертирующем) и тогда

Кроме того, учитывая, что , можно считать и, следовательно

Выходное напряжение схемы тогда определяется следующим соотношением:

Теперь легко получить выражение для передаточной функции схемы (см.рис.1, б):

Знак “минус” в последнем выражении указывает на то, что полярность выходного напряжения схемы противоположна полярности входного напряжения.

Для определения передаточной функции схемы на рис.1, а вначале найдем сопротивление конденсатора ZC(p) в операторной форме.

Мгновенное значение тока через емкость равно:

Переходя к изображениям по Лапласу:

IC(p)=CpUC(p).

Из последнего равенства

(Аналогично для индуктивности можно получить ZL(p)=Lp).

Используя выведенное значение ZC(p), для схемы на рис.2.6, а получим:

Z1(p)=R1;

где k=R2/R1- коэффициент передачи,

T=R2C- постоянная времени.

2.2. Частотные характеристики

Если на вход линейной непрерывной системы (или отдельного звена) подать синусоидальные (гармонические) колебания с постоянными амплитудой и частотной , то после затухания переходных процессов на выходе также возникают синусоидальные колебания с той же частотой, но с другой амплитудой и сдвинутые по фазе относительно входных колебаний. Как из вестно из курса "Основы теории цепей, часть 1", синусоидально изменяющиеся величины удобно изображать с помощью комплексных амплитуд. Комплексные амплитуды рассматриваемых здесь входных и выходных колебаний можно записать как и

Подавая на вход системы гармонические колебания с постоянной амплитудой, но различными частотами, на выходе системы тоже получаем гармонические колебания с теми же частотами, но различными амплитудами и фазами относительно входных колебаний.

Введем в рассмотрение отношение комплексных амплитуд выходных и входных колебаний:

(2.6)

Функция называется комплексной частотной и получается чисто формально, без каких-либо вычислений, путем замены в выражении передаточной функции переменной р на переменную: (2.7)

В различных формах записи функцию можно представить в следующем виде:

(2.8)

где и - действительная и мнимая части комплексной частотной функции, и - модуль и аргумент комплексной частотной функции .

При фиксированном значении частоты комплексную частотную функцию можно изобразить вектором на комплексной плоскости, как показано на рис.2.5.

Рис.2.5

Изменение частоты приведет к изменению величины и расположения вектора на комплексной плоскости, а конец вектора опишет некоторую траекторию. Геометрическое место концов векторов комплексной частотной функции при изменении частоты от нуля до бесконечности называется амплитудно-фазовой частотной характеристикой (АФЧХ).

В свою очередь все величины, представленные в (2.8), являются соответствующими частотными функциями, а построенные по выражениям для функций графики - частотными характеристиками.

называется вещественной частотной, а - мнимой частотной характеристикой.

показывает отношение амплитуд выходного и входного гармонических сигналов при изменении частоты и называется амплитудной частотной характеристикой.

показывает сдвиг фазы выходного гармонического сигнала относительно входного при изменении частоты и называется фазовой частотной характеристикой.

Между всеми частотными характеристиками существует непосредственная связь, вытекающая из тригонометрических соотношений и поясняемая рис.2.5.

В практических расчетах чаще всего амплитудную и фазовую частотные характеристики изображают в логарифмическом масштабе, что позволяет в значительной степени сократить объем вычислительных работ.

Логарифмической единицей усиления или ослабления мощности сигнала при прохождении его через какое-либо устройство при выражении десятичным логарифмом величины отношения мощности на входе Pвых к мощности на входе Pвх в технике принят бел. Так как мощность сигнала пропорциональна его амплитуде, получим:

Но так как бел является достаточно крупной единицей усиления (ослабления) мощности (увеличению мощности в 10 раз соответствует 1 Б), то за единицу измерения ее принят децибел 1дБ=0,1 Б.

С учетом этого можно записать:

Величина логарифма амплитудной частотной характеристики, выраженная в децибелах называется логарифмической амплитудно-частотной характеристикой (ЛАЧХ).

Таким образом, изменению отношения двух амплитуд в 10 раз соответствует изменение усиления на 20 дБ, в 100 раз - на 40 дБ, в 1000 раз - на 60 дБ и т.д.

Вычислим, какому отношению амплитуд соответствует один децибел, два и т.д.

1дБ=20lg(Aвых/Aвх);

lg(Aвых/Aвх)=1/20;

То есть 1 дБ 1,222.

2 дБ ~ (1,222)2=1,259;

3 дБ ~ (1,222)3=1,259;

4 дБ ~ 1,585;

5 дБ ~ 1,778;

6 дБ ~ 1,995 2.

Фазовая частотная характеристика , построенная в полулогарифмическом масштабе (в координатах: угол в градусах или радианах и ), называется логарифмической фазовой частотной характеристикой (ЛФЧХ).

За единицу измерения частоты используется логарифмическая единица декада. Декадой называется интервал частот между какой-либо величиной частоты и ее десятикратным значением.

В логарифмическом масштабе частот отрезок в одну декаду не зависит от частоты и имеет длину, равную

ЛАЧХ и ЛФЧХ строят обычно совместно, используя общую ось абсцисс (ось частот). Начало координат невозможно взять в точке , так как . Поэтому начало координат можно брать в любой удобной точке в зависимости от интересующего диапазона частот.

Точка пересечения ЛАЧХ с осью абсцисс называется частотой среза . Ось абсцисс соответствует значению , то есть прохождению амплитуды сигнала в натуральную величину (поэтому еще говорят, что на частоте среза система теряет усилительные свойства).

Из рассмотренных здесь частотных характеристик две можно получить экспериментально-амплитудную и фазовую ). Из этих двух экспериментальных остальные частотные характеристики могут быть рассчитаны по соответствующим формулам, например - по формуле (2.8). Кроме того, рассчитав по экспериментальным данным , по (2.7) путем обратной подстановки (заменив на р) можно получить передаточную функцию, по (2.4) - из передаточной функции дифференциальное уравнение в операторной форме и далее, применив обратное преобразование Лапласа - дифференциальное уравнение (уравнение динамики системы).

К содержанию

2.3. Временные функции и характеристики

Под временными характеристиками в общем случае понимается графическое изображение процесса изменения выходной величины в функции времени при переходе системы из одного равновесного состояния в другое в результате поступления на вход системы некоторого типового воздействия.

Под временными характеристиками в общем случае понимается графическое изображение процесса изменения выходной величины в функции времени при переходе системы из одного равновесного состояния в другое в результате поступления на вход системы некоторого типового воздействия.

Так как временные характеристики могут быть получены не только путем решения дифференциального уравнения, но и экспериментально, то возможность определения динамических свойств системы по временной характеристике имеет исключительно важное практическое значение, поскольку в этом случае не требуется выводить и решать дифференциальное уравнение.

В качестве типовых воздействий наиболее широкое применение находят единичное ступенчатое и единичное импульсное воздействия.

Математическое выражение единичного ступенчатого воздействия может быть записано в виде

Под единичным импульсным воздействием понимается предельно короткий импульс

площадь которого равна единице, то есть

Выражение для единичного импульса в математике принято называть дельта-функцией .

Графическое изображение реакции системы на единичное ступенчатое воздействие называется переходной характеристикой.

Аналитическое выражение переходной характеристики обозначается h(t) и называется переходной функцией.

Графическое изображение реакции системы на единичное импульсное воздействие называется импульсной переходной характеристикой.

Аналитическое выражение импульсной переходной характеристики обозначается и называется импульсной переходной функцией или весовой функцией (функцией веса).

При практических расчетах наиболее широкое применение находит временная характеристика в виде переходной характеристики, так как ее достаточно просто получить экспериментально и, кроме того, определяемый ею переходный процесс часто возникает при включениях и изменениях задающего воздействия.

При поступлении на вход системы с передаточной функцией W(p) величины xвх(t)=1(t) на выходе получаем переходную характеристику xвых(t)=h(t).

В преобразованном по Лапласу виде входная и выходная величины запишутся

L{h(t)}=h(p)=xвых(p).

С учетом этих соотношений получим:

(2.9)

Из последнего выражения следует, что по переходной функции можно получить передаточную функцию.

При поступлении на вход САР величины на выходе получаем импульсную переходную характеристику или в преобразованном по Лапласу виде:

В результате определим:

(2.10)

Установим связь между переходной и импульсной переходной функциями, приравняв правые части выражений (2.9) и (2.10):

Но так как р соответствует символу дифференцирования, то

Импульсная переходная функция является производной от переходной функции.

2.4. Структурные схемы и их преобразование

В теории автоматического управления под структурной схемой понимается графическое изображение математического описания. То есть для составления структурной схемы система дробится на элементы, каждый из которых описывается простейшим математическим выражением (в виде передаточной функции). Структурные схемы содержат следующие четыре типа элементов: звенья направленного действия; устройства сравнения, или сумматоры; линии связи; точки разветвления (узлы).

Звенья направленного действия изображаются прямоугольниками, внутри которых записываются их передаточные функции.

Между собой звенья соединяются с помощью линий связи. На этих линиях стрелками указывается направление распространения сигналов. Следует подчеркнуть, что в направлениях, противоположных указанным стрелками, сигналы не распространяются. Сами линии связи, также как и сумматоры, считаются идеальными, то есть никакими параметрами не обладают.

Сумматоры предназначены для суммирования сигналов (с учетом знака сигнала), как и на функциональных схемах.

Для распределения сигналов по различным направлениям используются узлы, которые обозначаются точками в местах пересечения линий связи.

Для удобства расчетов бывает необходимо преобразовать исходную структурную схему системы к какому-либо желаемому виду, чаще всего - к цепи последовательно соединенных звеньев. В связи с этим рассмотрим основные правила преобразования структурных схем.

При последовательном соединении n звеньев с передаточными функциями Wi(p) эквивалентная передаточная функция Wэ(p) определяется их произведением:

При параллельном соединении n звеньев эквивалентная передаточная функция определяется суммой передаточных функций Wi(p) отдельных звеньев:

Для случая обратной связи при выводе эквивалентной передаточной функции замкнутого участка Wз(p) используем обозначения, приведенные на рис.2.6.

Рис.2.6 Схема замкнутого участка системы

Обратная связь называется отрицательной, если x1=xвх-xoc, как показано на схеме, и положительно, если x1=xвх+xoc.

Отсюда получаем передаточную функцию

Для положительной обратной связи в знаменателе формулы знак "плюс" меняется на "минус".

Указанные три вида преобразования структурных схем являются наиболее часто встречающимися. Для остальных случаев сформулируем основной принцип преобразования и поясним несколькими примерами. При преобразовании структурной схемы передача сигнала по выбранному направлению не должна меняться.

Например, в структурной схеме на рис.2.7, а необходимо перенести узел через звено с передаточной функцией W2(p). Чтобы передача сигнала по цепи обратной связи не изменилась, необходимо ввести фиктивное звено с передаточной функцией 1/W2(p), как показано на рис.2.7, б.

Рис.2.7 Преобразование структурной схемы

Чтобы передача сигнала по цепи обратной связи не изменилась, необходимо ввести фиктивное звено с передаточной функцией 1/W2(p), как показано на рис.2.7, б.

В более сложных случаях в процессе преобразования необходимо производить определенные расчеты.

Например, в схеме на рис.2.8, а узел 1 необходимо перенести на выход звена с передаточной функцией W2(p).

а) б)

Рис.2.8 Преобразование структурной схемы

Установим связь между величинами Xвых(p) и X2(p).

На входе звеньев с передаточными функциями W1(p) и W2(p) действует сигнал

На выходе звена с передаточной функцией W1(p)

На выходе сумматора в узле 1

Отсюда видно, что в рассматриваемом примере при переносе узла необходимо ввести фиктивное звено с передаточной функцией, как показано на рис. 2.10, б.

При переносе узла в схеме на рис.2.9, а с выхода сумматора на его положительный вход найдем передаточную функцию фиктивного звена без дополнительных пояснений.

Рис.2.9

2.5. Типовые звенья и их характеристики

Известно, что полином любого порядка можно разложить на простые множители. То есть любую САУ можно представить в виде последовательного соединения типовых звеньев. С другой стороны, реальные звенья САУ могут иметь самую разнообразную физическую основу (электронные, механические, гидравлические, электромеханические и т.п.) и конструктивное выполнение, но иметь одинаковые передаточные функции и являться одинаковыми типовыми звеньями. Поэтому знание характеристик звеньев столь же необходимо для расчетов САУ, как знание таблицы умножения в арифметике.

Все линейные типовые звенья разделяют на три группы: позиционные звенья, интегрирующие и дифференцирующие. Позиционные звенья: апериодическое, пропорциональное, колебательное, консервативное и чистого запаздывания - характеризуется тем, что в каждом из них, кроме консервативного, при подаче на вход постоянной величины с течением времени устанавливается постоянное значение выходной величины.

В звеньях, относящихся к группе интегрирующих, при постоянном входном воздействии выходная величина неограниченно растет.

Дифференцирующие звенья характеризуются тем, что реагируют только на изменение входной величины.

Рассмотрим типовые звенья и их характеристики.

Пропорциональное (безинерционное) звено. Описывается уравнением и имеет передаточную функцию

xвых(t)=kxвх(t), W(p)=k.

Параметр k называется в общем случае коэффициентом передачи звена и может иметь любую размерность. В частных случаях, когда k является величиной безразмерной, принято пользоваться термином "коэффициент усиления".

Частные и временные функции звена:

Примерами таких звеньев могут служить механические связи, электронные усилители сигналов на низких частотах и др.

Апериодическое звено 1ого порядка описывается ДУ следующего вида:

или

где – выходная величина; (t) – входная величина; Т─ постоянная времени звена; k─ коэффициент передачи.

Передаточная функция

;

,

где ; .

К этим звеньям относятся исполнительные двигатели, усилители мощности, магнитные усилители, RC – фильтры.

АЧХ звена определяется выражением:

где – сопрягающая частота.

ФЧХ звена:

Переходная характеристика:

Весовая функция

Графическое изображение переходной и весовой функции (рис. 3):

Рис. 3. Переходная и весовая характеристики апериодического звена


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: