Связь между непрерывностью и дифференцируемостью функции

*Если функция f (x) дифференцируема в некоторой точке, то она непрерывна в этой точке. Обратное неверно: непрерывная функция может не иметь производной.

*С л е д с т в и е. Если функция разрывна в некоторой точке, то она не имеет производной в этой точке.

П р и м е р. Функция y = | x | (рис.3) всюду непрерывна, но она не имеет производной при x = 0, так как в этой точке не существует касательной к графику этой функции. (Подумайте, почему?)  

 

Лагранжа

 

 

Отношение f(b)-f(a) / b-a есть угловой коэффициент секущей АВ, а величина f I(c) – угловой коэффициент касательной к кривой в точке x=c, следовательно геометрический смысл т. Лагранжа заключается в следующем: на графике y=f(x) найдется точка C(c;f(c)) в которой касательная к графику функции параллельна секущей АВ.

СЛЕДСТВИЕ:

Если, производная функции yi=0 на некотором промежутке, то ф-я постоянна на этом промежутке.

Если две ф-ии имеют равные производные на некотором промежутке, то они отличны друг друга на постоянное слагаемое.

 

 

Теорема Лагранжа

 Если f(x) непрерывна на [a;b], дифференцируема на (a;b), то найдется хотя бы одна точка , такая, что f(b)-f(a)=f I(c)(b-a)

*ДОКАЗАТЕЛЬСТВО:

Положим в т. Коши φ(x)=x

  

Подставим эти значения в формулу:

 

 Что и требовалось доказать.

 

Правило Лопиталя

 

Если  

То f(x) и φ(x) в некоторой окрестности содержат точку x=x0 удовлетворяющую всем условиям т. Коши.

*Предел отношения функций равен пределу отношения их производных.

при условии, что предел правой части равенства существует.

*Правило Лопиталя применимо и в том случае когда:

Аргумент x стремится к бесконечности

*Если отношение производных f I и φi при x стрем. к беск. Снова приводит к неопределенности вида 0/0 или ∞/∞.

При выполнении требуемых условий правило Лопиталя можно использовать повторно.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: