Другие два закона Ньютона

 

Ранее мы вывели закон сохранения импульса: P1 = P2 (11.1). Из уравнения (11.1) легко получается третий закон Ньютона: F1 = F2 (11.2). В стандартном учебнике третий закон читается так: сила действия F1 равна силе противодействия F2. Понять это не просто, поэтому в учебнике сразу следует картинка с тележкой, которую толкает рабочий. На этом учебном примере нам пытаются объяснить, чем сила противодействия тележки отличается от силы действия рабочего и почему она не может её уравновесить, хотя и равна ей. Используются термины, разъяснения, но понимания так и не наступает. Попробуем разобраться, в чём тут дело.

В нашем энергетическом подходе третий закон Ньютона вытекает из закона сохранения импульса (10.3). Это уравнение получено опытным путем. Оно практично, понятно, его ничем не опровергнуть. Нам не надо читать уравнение (11.1) в виде: «импульс действия равен импульсу противодействия». Это звучит бессмысленно. Мы знаем, что импульс сохраняется, как сохраняется энергия. И всё. Сложности не нужны, если они не помогают понять суть вещей.

Остаётся вопрос, откуда берётся «сила противодействия» F2? Очень просто. Она появляется в системе отсчета, связанной с тележкой, которая движется с ускорением. Такую тележку нельзя брать в качестве системы отсчёта, это нарушение постулата об инерциальной системе. Так как законы Ньютона верны только в инерциальной системе отсчёта, неудивительно, что при нарушении второго закона возникает иллюзия силы, которая не связана ни с каким телом. Эту силу Фейнман называл фиктивной, так как она существует только в воображении. Реальная сила, писал Фейнман, должна иметь источник – реальное тело. Этот принцип будет более понятным, если мы рассмотрим ускоренное движение тела относительно системы отсчета, привязанной к неподвижным звёздам.

Представим, что в космос запущена ракета с космонавтом на борту. Относительно неподвижных звёзд сила F1 тяги двигателя придаёт ракете ускорение a = F1/m, где m – масса ракеты. При этом сохраняется полный импульс: легкий горячий газ с огромной скоростью отбрасывается назад, массивная ракета с малой скоростью летит вперед, т. е. (с учетом знаков) Р1 = – Р2. Мы видим, что относительно неподвижных звёзд выполняется третий закон Ньютона.

Представим теперь, что забыв требование постулата об инерциальной системе отсчета, космонавт ведет наблюдение внутри ракеты, движущейся с ускорением. Космонавт чувствует, что давит на кресло с силой F2 = -am, где m – масса космонавта. Он называет её силой инерции. Но космонавт не работает, не машет крыльями, он просто спит. Космонавт не тратит энергию, в отличие от ракеты, которая сжигает топливо. Он давит на кресло только потому, что кресло толкает его с ускорением. Стоит выключить двигатель, космонавт сразу теряет вес. На кресло он уже не давит, он даже парит в воздухе. В этом сущность «силы» инерции. За ней не стоит источник энергии, работать она никогда не будет.

Следует заметить, для некоторых задач уравнения движения имеет более простой вид, если их записать относительно неинерциальной системы отсчёта. Для упрощения расчётов можно пойти на этот шаг, но никогда нельзя забывать, что это чисто математический приём, а «сила инерции» существует только на бумаге.

Четвёртым законом Ньютона является закон всемирного тяготения: F = GMm/R2. Жаль, что в классической механике этот закон не имеет порядкового номера. Это настоящий природный закон, он показывает, что гравитация существует вокруг любого массивного тела. Для поля тяготения Земли закон всемирного тяготения имеет вид: P = mg. Мы с удовольствием поставили бы этот закон на второе место, но оно уже занято.

Возникает вопрос: зачем нужны законы Ньютона? Дело в том, что человек превращает энергию в полезную работу при помощи машин и механизмов. Машиной называют устройство для преобразования энергии любого вида в механическую работу. В составе любой машины имеются механизмы. Механизм – это устройство для преобразования движения одного вида в другое. Например, подъёмный кран – это машина с электродвигателем, который превращает энергию электричества в механическую работу. Кран оборудован лебёдкой. Лебёдка – это механизм для преобразования вращения вала электродвигателя в поступательное движение каната с захватом для груза. Чтобы успешно строить машины и механизмы, надо хорошо знать законы механики.

 

Работа в физике

 

Чаще всего энергию передают от одного тела другому при помощи специального рабочего тела (механизма). Говорят, что при этом рабочее тело выполняет работу. В идеальном случае механизм передает энергию без потерь. В реальном мире всегда существуют потери энергии. Это означает, что источник отдаёт больше энергии, чем получает приемник.

Работу принято обозначать символом А.

Механическую работу определяют как произведение силы на перемещение: A = Fs (12.1). Значит, работа измеряется в джоулях: [A] = [Fs] = [Нм] = Дж. Энергия тоже измеряется в джоулях, но между энергией и работой мало общего. Энергия – это природная величина, которой обладает любое тело. Энергию можно запасать. Например, дамоклов меч можно подвесить и он будет иметь запас потенциальной энергии. В отличие от энергии, работа всегда связана с движением. Представим, ракетный двигатель испытывают на стенде. Сила тяги действует, но перемещение равно нулю, ведь стенд неподвижен. Из (12.1) следует, что работа тоже равна нулю, хотя прибор может показать, что двигатель развивает силу тяги F = 10 кН. В чём тут смысл? Особого смысла нет, просто принято считать, что работа равна энергии, отданной источником другому телу, например, стенду. Но у стенда не изменяется ни потенциальная энергия, ни кинетическая. Стенд не приобрел ничего, следовательно, работа A=Fs тоже равна нулю. В этом смысле можно написать: А = Е.

Рассмотрим как энергия поля гравитации переходит в механическую работу на примере часов «с кукушкой». Чтобы завести часы с кукушкой, надо поднять гирю на цепи. Допустим, вес гири равен 6 Н, а длина цепи – 0.5 м. Значит, заводя часы, мы совершили работу А = Fs = Ph = 6*0.5 = 3 (Дж). Эта работа превратилась в потенциальную энергию гири: Е = А. Вес гири Р направлен вниз. Вес – это сила, которая вращает стрелки часов. Пока гиря опускается, часы работают. При этом гравитационная энергия гири преобразуется в работу механических часов. Примерно через сутки гиря опустится на всю длину цепи и часы остановятся. Энергия, равная 3 Дж, полностью израсходована. В основном она потрачена на преодоление трения в часах. Трение приводит к нагреванию. Хотя три джоуля – энергия небольшая, в комнате с работающими часами должно быть немного теплее, чем в комнате без часов.

Для оценки производительности машин и приборов используют понятие мощности, которую чаще обозначают буквой Р (от английского power – мощность). Мощность машины численно равна механической работе, выполненной за одну секунду: P = A/t (12.2). Можно было бы измерять мощность просто в джоулях за секунду. Но для неё ввели специальную единицу ватт (Вт). Таким образом: 1 Вт = 1 Дж/с. Мощность устройства это важная характеристика, её указывают в техническом паспорте изделия. К примеру, на цоколе электролампы написано: «220 В, 95 Вт». Лампа «горела» в течение часа. Вопрос: какое количество электроэнергии было израсходовано? Решение: E = A = Pt. E = 95*3600 = 342000 (Вт*с) (12.3). Число получилось неудобно большим. Для повышения удобства в технике электроэнергию считают в кВт*часах. Для этого результат (12.3) нужно разделить на 3600 (число секунд в 1 часе) и на 1000 (число ватт в 1 киловатте). В итоге получаем Е = 0.095 кВт*час. Это небольшая величина, меньше рубля в денежном эквиваленте. Следует сказать, Россия богата энергетическими ресурсами.

Строго говоря, не вся затраченная энергия превращается в полезную работу. Какая-то часть расходуется на трение, на перемагничивание и тому подобное. Для оценки совершенства машины вводят понятие коэффициента полезного действия, сокращённо КПД. Его определяют по формуле: КПД = 100 %*А/Е, где А – полезная работа, равная переданной энергии, Е – затраченная энергия. Таким образом, КПД измеряют в процентах. К примеру, если в лампе накаливания 80 % энергии уходит на тепло, а только 20 % – на освещение, значит, КПД лампы, как осветительного прибора, равен 20 %. Это невысокий КПД. Но если эту лампу использовать в качестве нагревателя в инкубаторе для цыплят, её КПД будет равен 80 %. Это нормальный КПД.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: