Інтервальне оцінювання параметрів

 

Інтервальною називають оцінку, що визначається двома числами – кінцями інтервалу. Інтервальні оцінки дозволяють визначити точність і надійність точкових оцінок.

Надійністю (довірчою ймовірністю) оцінки невідомого параметра  за допомогою знайденої за даними вибірки статистичної характеристики  називають ймовірність , з якою виконується нерівність :

 

 

чи, що те ж саме

 

.

 

Звичайно використовують рівень надійності, що має значення: 0,95; 0,99 і 0,999.

Довірчим називають інтервал (  ), який покриває невідомий параметр із заданою надійністю .

1 Довірчі інтервали для оцінки математичного сподівання нормаль­ного розподілу при відомому . Розглянемо задачу інтервальної оцінки невідомого математичного сподівання  кількісної ознаки  по вибірковій
середній  нормально розподіленої сукупності з відомим середньо квадратич­ним відхиленням . Знайдемо довірчий інтервал, що покриває параметр  з надійністю .

Вибіркова середня  змінюється від вибірки до вибірки. Тому її можна розглядати, як випадкову величину , а вибіркові значення ознаки , ,...,  (ці числа також змінюються від вибірки до вибірки) – як однаково розподілені незалежні випадкові величини , ,..., . Тобто, математичне сподівання кожної з цих величин дорівнює  і середнє квадратичне відхилення – .

Можна показати, що у разі нормального розподілення випадкової величина  вибіркова середня , знайдена за незалежними спостереженнями, також розподілена нормально з параметрами:

 

, .                                   (12)

 

Поставимо вимогу, щоб було виконано співвідношення

 

,                                           (13)

 

де  – задана надійність.

Застосуємо до нормально розподіленої випадкової величини  відому з теорії ймовірностей формулу про ймовірність відхилення нормально розподіленої випадкової величини  зі середньоквадратичним відхиленням  від його математичного сподівання  не більше ніж на

 

 ,                              (14)

 

де  – табульована функція Лапласа (3).

При цьому у формулі (14) відповідно до (12) необхідно замінити  на ,  на , залишивши математичне чекання  без зміни.

Тоді одержимо:

 

,                       (15)

 

де введено таке позначення

 

.                                           (16)

 

Підставивши у формулу (15) вираз величини  через  з (16)

 

,                                            (17)

 

перетворивши її до вигляду:

 

.

 

З огляду на те, що ймовірність  задана і дорівнює  (13), а також, що випадкова величина  є формальним поданням вибіркової середньої , остаточно одержимо:

 

.                  (18)

 

Цю оцінку називають класичною. Відповідно до неї з надійністю  можна стверджувати, що довірчий інтервал  покриває невідомий параметр . При цьому величина  визначається з рівності (18), а точність оцінки  – з (17).

З формули (17) видно, що із зростанням обсягу вибірки  величина  зменшується, тобто точність оцінки підвищується. З співвідношення (18), де , із врахуванням відомого зростаючого характеру функції Лапласа  (3), випливає, що підвищення надійності класичної оцінки (18) призводить до погіршення її точності.

2 Довірчі інтервали для оцінки математичного сподівання нормального розподілу при невідомому . Ускладнимо постановку задачі, розглянутої в попередньому пункті, вважаючи, що тепер середнє квадратичне відхилення  нормально розподіленої кількісної ознаки  невідомо.

У цьому випадку за даними вибірки побудуємо випадкову величину  (її значення будемо традиційно позначати відповідною малою буквою ), що є функціональним перетворенням випадкової величини , введеної в попередньому пункті:

 

 .                                             (19)

 

Тут збережено позначення, які введені в попередньому пункті. Крім того, вжито , що є "виправлене" середнє квадратичне відхилення (1.7).

Можна показати, що випадкова величина  (19) має розподіл Стьюдента (2.8) з  ступенями волі і щільністю розподілу:

 

,

 

Де

 

,

 


 – Гама-функція Эйлера (2.4).

Очевидно, що розподіл Стьюдента визначається параметром  – обсягом вибірки та не залежить від невідомих параметрів  і , що зумовило його практичну цінність. Оскільки функція  є парною відносно , ймовірність виконання нерівності  можна перетворити таким чином:

 

.

 

При заміні нерівності в круглих дужках на еквівалентну йому подвійну нерівність і заміні  на  так само, як у попередньому пункті, остаточно  одержимо:

 

.

 

Тобто, використовуючи розподіл Стьюдента, можна знайти довірчий інтервал , що покриває невідомий параметр  із надійністю . Величина  при цьому знаходиться в таблиці розподілу Стьюдента у залежності від значень параметрів  і .

3 Довірчі інтервали для оцінки середнього квадратичного відхилення  нормального розподілу. Тепер вирішимо задачу інтервальної оцінки з надійністю  невідомого генерального середнього квадратичного відхилення  нормально розподіленої кількісної ознаки  за його "виправленим" вибірковим середньо квадратичним відхиленням s. Це означає, що має виконуватися умова:

 

чи, що те ж саме,

 

.                                     (20)

 

Подвійну нерівність у виразі (20) зручно перетворити до вигляду:

 

                                      (21)

,                                  (22)

 

де введено позначення

 

                                             (23)

 

і враховано, що відхилення  відносно , тобто  – мала величина в порівнянні з , так що .

Вибіркове середнє квадратичне відхилення  змінюється від вибірки до вибірки, тому його можна розглядати як випадкову величину, що ми дотримуючись традиції позначимо відповідною великою літерою . Помноживши всі члени останньої нерівності (22) на , одержимо нову нерівність

 

,

 

що після введення позначення

 

                                         (24)

прийме остаточний вигляд:

 

.                                      (25)

 

Відзначимо, що нерівності (21) і (25) еквівалентні. Тому рівність (20) можна тепер переписати так:

 

.               (26)

 

Пірсон показав, що величина  (24) після її підвищення до квадрату, тобто у вигляді , підкоряється закону розподілу "хі-квадрат" (5), тому і має таке позначення. Можна показати, що щільність розподілу самої випадкової величини  має при цьому наступний вигляд:

 

 .                               (27)

 

Важлива особливість цього розподілу полягає в тому, що воно є інваріантним відносно оцінюваного параметра , і залежить лише від обсягу вибірки .

Відомо, що ймовірність неперервній випадковій величині  знаходитися на інтервалі (  ,  ) виражається у такий спосіб через щільність її розподілу:

 

.

Застосувавши цю формулу в нашому конкретному випадку ймовірності перебування випадкової величини  (24) із щільністю у вигляді (27) на інтервалі (25), одержимо:

 

.                   (28)

 

Співвідношення (28) можна розглядати як рівняння щодо невідомої величини  (23) при заданих значеннях  і . Це рівняння було розв’язано в загальному вигляді зі складанням таблиць, по яких можна знайти значення . Знаючи величину  і "виправлене" вибіркове середнє квадратичне відхилення s по формулам (21), (23) визначаємо довірчий інтервал для оцінки середнього квадратичного відхилення  нормального розподілу.

4 Оцінки істинного значення величини, що вимірюється, і точності вимірів. Ця задача подає великий практичний інтерес для метрології.

Нехай проведено  незалежних однаково точних вимірів деякої фізичної величини, істинне значення  якої невідомо. До того ж невідомо також і середнє квадратичне відхилення  випадкових похибок вимірювання. Результати окремих вимірів , ,...,  можна розглядати, як випадкові величини , ,..., , що є незалежні (виміри незалежні), мають те ж саме математичне сподівання  (істинне значення величини, що вимірюється), однакові дисперсії  (виміри однаково точні) і нормально розподілені (таке допущення підтверджується досвідом).

Отже, усі припущення, що було зроблено під час отримання довірчих інтервалів у пунктах 1 і 2, виконуються. Тому можна безпосередньо використати отримані в них формули. Іншими словами, істинне значення величини, що вимірюється, можна оцінювати по середньому арифметичному результатів окремих вимірів за допомогою довірчих інтервалів.

Середнє квадратичне відхилення  випадкових похибок вимірів у теорії помилок характеризує точність вимірів (точність приладу).

Для оцінки  використовують "виправлене" середнє квадратичне відхилення . Оскільки звичайно результати вимірів взаємно незалежні, мають одне й теж саме математичне сподівання (істинне значення величини, що вимірюється) і однакову дисперсію (у випадку однаково точних вимірів), то теорію, викладену в пункті 3, можна застосувати і для оцінки точності вимірів.

5 Інтервальна оцінка ймовірності біноміального розподілу. У підрозділі 2 у якості приклада 1 було вирішено задачу точкової оцінки ймовірності біноміального розподілу. Як точкову оцінку невідомої ймовірності  було узято відносну частоту  появи події (  – число появ події,  – число випробувань). Було отримано математичне сподівання і дисперсію оцінки.

Тепер буде знайдено довірчий інтервал для оцінки ймовірності за відносною частотою.

Для спрощення припустимо, що кількість іспитів  досить велика, а ймовірність  не є близькою ні до одиниці, ні до нуля (досить, щоб обидві величини  і  були більше чотирьох). Тоді можна вважати, що частота події  є випадковою величиною , розподіл якої є наближеним до нормального закону (у сенсі функції розподілу). Параметрами цього закону будуть  і .

Тому до випадкової величини  можна застосувати відому формулу про ймовірність відхилення нормально розподіленої випадкової величини  зі середньо квадратичним відхиленням  від її математичного сподівання  не більше ніж на

 

 ,                               (29)

 

де  – табульована функція Лапласа.

Зажадавши, щоб умова для ймовірності у формулі (29) виконувалося з надійністю , і, замінивши в ній  на ,  на ,  на , а також увівши позначення , одержимо

 

 

або інакше

 

.

 

При практичному застосуванні цієї формули випадкову величину  необхідно замінити невипадковою відносною частотою , що спостерігається, і підставити :

 

.

 

Під час розв’язання цієї нерівності щодо невідомої ймовірності  у припущенні  підвищимо до квадрата обидві її частини. При цьому одержимо еквівалентну квадратну нерівність відносно :

 

.

 

Її коефіцієнт при старшому члені та дискримінант позитивні, тому її корені  і  дійсні, причому не дорівнюють один одному. Отже ця нерівність має розв’язання:

 

,

дисперсія крива розподіл сподівання

що і визначає довірчий інтервал, який слід знайти.

Аналогічний розв’язок нерівності отримуємо і у разі .

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: