Лекция №13. Обратное утверждение неверно

Тема: «Экстремумы»

Замечание:

Обратное утверждение неверно. Из-за того, что произведение в данной точки равно нулю, не следует, что это экстремум.

y=(x-1)3

y’=3(x-1)2

y’(1)=0

x0=1

xÎO°-d(1)Þf(x)<0

xÎO°+d(1)Þf(x)<0

x=1 – не точка экстремума.

Теорема (Ролля):

Пусть функция y=f(x) непрерывна на отрезке [a,b] и дифференцируема на (a,b). Кроме того на концах интервала она принемает равные значения f(a)=f(b), тогда $ сÎ(a,b): f(c)=0

Доказательство: Така как функция непрерывна на отрезке [a,b], то по второй теореме Вейштрасса есть наибольшее и наименьшее значение (m,M), если m=M, то f(x)ºconst ("xÎ[a,b]) (const)’=0.

Пусть m<M, тогда либо m, либо М отлична от значений на концах отрезка. Пусть например M¹f(a):$ c(a,b):f(c)=M, то есть точка с точка экстремума максимума следовательно по теореме Ферма f’(c)=0

Замечание: условие дифференцируемсти нельзя отбросить.

непрерывна на отрезке [a,b]

Геометрический смысл.

f’(x)=0, то касательная || оси х. Теорема не утверждает, что это единственная точка.

Теорема Лангранджа:

Пусть функция y=f(x) непрерывна на отрезке [a,b] и дифференцируема на отрезке (а,b), то $ сÎ(a,b): f(b)-f(a)=f(c)(b-a)

Доказательство:

F(x)=f(x)+lx где l - пока неизвестное число.

F(x) – непрерывна на отрезке [a,b] как сумма непрерывной функции

f(x) – дифференцируема на отрезке [a,b] как сумма дифференцируемой функции.

Выберем число l, так чтобы на отрезке [a,b] F(x) принимало равное значение.

F(a)=f(a)+la

F(b)=f(b)+lb

F(a)=F(b) Þ f(a)-f(b)=l(a-b) Þ l=[f(b)-f(a)]/[b-a]

F(x) – удовлетворяет условию теоремы Роллера на отрезке [a,b] Þ $ cÎ(a,b):F’(c)=0, то есть F’(x)=f’(x)+l

0=f’(c)+l Þ f’(c)=-l=[f(b)-f(a)]/[b-a]

То есть на кривой которая наклонена

к оси х под таким же углом как и секущая

[f(b)-f(a)]/[b-a]=tga=f(x) $ cÎ(a,b)

Замечание:

Часто точку с можно представить в

нужном виде:

с=х0+q∆х

0<(c-x0)/(x-x0)= q<1

c-x0=q(x-x0)

c=x0+q(x-x0)1

f(x)-f(x0)=f’(x0+q∆x)(x-x0)

0<q<1

∆f(x0)=f’(x0+q∆x)∆x

Теорема: (о необходимых и достаточных условиях экстремума по первой производной)

Пусть y=f(x) непрерывна на отрезке [a,b] и дифференцируема в О°(х0). Если f’(x) меняет знак при переходе через точку х0, то точка х0 – точка экстремума. Если меняет знак:

с + на – то это точка максимума

с – на + то это точка минимума

Доказательство: " х1 Î О°-0) на [x1,x0]; $ c1Î(x1,x0) f(x0)-f(x1)=f’(c1)(x0-x1) Þ f(x0)>f(x1) "x1ÎO°-(x0)

" х2 Î О°+0) на [x0,x2]; $ c2Î(x0,x2) f(x2)-f(x0)=f’(c2)(x2-x0) Þ f(x2)<f(x0) "x2ÎO°+(x0)

f(x0)>f(x) "xÎO°(x0) Þ точка х точка максимума.

Если в точке х0 существует производная то она обязательно равна 0 в силе теоремы Ферма. Но могут быть точки в которых f(x) существует, а f’(x) не существует.

Принцип решения подобных задач:

Условие: найти наибольшее и наименьшее значение функции не отрезке [a,b].

Ход решения:

1) Находим точки в которых производная либо равна 0 либо не существует f’(x)=0 или f’(x) $ x1, xn

2) Вычисляем знак функции на концах отрезка и в этих точках f(a), f(b), f(x1)….f(xn)

3) Выбираем наибольшее и наименьшее m£f(x)<M

Определение: точки в которых функция определена, а производная либо равняется нулю, либо не существует называют критическими точками.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: