Примеры разложения функций в ряд Фурье

Тригонометрические ряды (ряды Фурье) периодической функции периода.

Тригонометрическим рядом называется ряд вида

.

Условия сходимости этого ряда мы сформулируем дальше, сейчас предположим, что этот ряд сходится в любой точке, и что его сумма равна. Очевидно, что - периодическая функция периода (как сумма периодических функций). Выразим коэффициенты ряда через функцию. Умножая скалярно равенство на 1, получим

. Так как,, то все слагаемые в сумме равны нулю, поэтому, или. Умножим то же равенство скалярно на, в результате. Здесь равны нулю все скалярные произведения, кроме скалярного квадрата функции (в сумме при), поэтому.

Умножая равенство на, получим. Окончательно

.

(параметр переобозначен).

1..

Мы пишем, подразумевая, что это верно на интервале; вне этого интервала функция периодически повторяется с периодом.

Решение. Вычисляем коэффициенты Фурье:;;.

Итак,

Тема 15.

По́лной гру́ппой собы́тий в теории вероятностей называется система случайных событий такая, что в результате произведенного случайного эксперимента непременно произойдет одно из них.

Геометрические вероятности — вероятности попадания точки в область (отрезок, часть плоскости и т. д.).

Тема 16.

Тема 17.

Тема 18.

Тема 19.

При рассмотрении случайных процессов, протекающих в системах с дискретными состояниями и непрерывным временем, часто приходится встречаться с так называемыми «потоками событий».

Потоком событий называется последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Примерами могут быть:

- поток вызовов на телефонной станции;

- поток включений приборов в бытовой электросети;

- поток грузовых составов, поступающих на железнодорожную станцию;

- поток неисправностей (сбоев) вычислительной машины;

- поток выстрелов, направляемых на цель, и т. д.

Рассмотрим потоки событий, обладающие некоторыми простыми свойствами [7].

1. Стационарность. Поток называется стационарным, если вероятность попадания того или иного числа событий на элементарный участок времени длиной т (рис. 5.3, а) зависит только от длины участка и не зависит от того, где именно на оси t расположен этот участок.

Стационарность потока означает его однородность по времени; вероятностные характеристики такого потока не меняются в зависимости от времени. В частности, так называемая интенсивность (или «плотность») потока событий — среднее число событий в единицу времени — для стационарного потока должна оставаться постоянной. Это, разумеется, не значит, что фактическое число событий, появляющихся в единицу времени, постоянно, поток может иметь местные сгущения и разрежения. Важно, что для стационарного потока эти сгущения и разрежения не носят закономерного характера, а среднее число событий, попадающих на единичный участок времени, остается постоянным для всего рассматриваемого периода.

На практике часто встречаются потоки событий, которые (по крайней мере, на ограниченном участке времени) могут рассматриваться как стационарные. Например, поток вызовов, поступающих на телефонную станцию, скажем, на интервале от 12 до 13 часов может считаться стационарным. Тот же поток в течение целых суток уже не будет стационарным (ночью интенсивность потока вызовов гораздо меньше, чем днем). Заметим, что так же обстоит дело и с большинством физических процессов, которые мы называем «стационарными» — в действительности они стационарны только на ограниченном участке времени, а распространение этого участка до бесконечности — лишь удобный прием, применяемый в целях упрощения.

2. Отсутствие последействия. Поток событий называется потоком без последействия, если для любых непересекающихся участков времени число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой (или другие, если рассматривается больше двух участков).

В таких потоках события, образующие поток, появляются в последовательные моменты времени независимо друг от друга. Например, поток пассажиров, входящих на станцию метро, можно считать потоком без последействия, потому что причины, обусловившие приход отдельного пассажира именно в данный момент, а не в другой, как правило, не связаны с аналогичными причинами для других пассажиров. Если такая зависимость появляется, условие отсутствия последействия оказывается нарушенным.

Рассмотрим, например, поток грузовых поездов, идущих по железнодорожной ветке. Если по условиям безопасности они не могут следовать один за другим чаще, чем через интервал времени, то между событиями в потоке имеется зависимость, и условие отсутствия последействия нарушается. Однако, если интервалмал по сравнению со средним интервалом между поездами, то такое нарушение несущественно.

3. Ординарность. Поток событий называется ординарным, если вероятность попадания на элементарный участок двух или более событий пренебрежимо мала по сравнению с вероятностью попадания одного события.

Ординарность означает, что события в потоке приходят поодиночке, а не парами, тройками и т. д. Например, поток клиентов, направляющихся в парикмахерскую, практически можно считать ординарным, чего нельзя сказать о потоке клиентов, направляющихся в ЗАГС для регистрации брака, и т. д.

Если в неординарном потоке события происходят только парами, только тройками и т. д., то можно его рассматривать как ординарный «поток пар», «поток троек» и т. д. Несколько сложнее обстоит дело, если число событий, образующих «пакет» (группу одновременно приходящих событий), случайно. Тогда приходится наряду с потоком пакетов рассматривать случайную величину X — число событий в пакете, и математическая модель потока становится более сложной.

Рассмотрим поток событий, обладающий всеми тремя свойствами: стационарный, без последействия, ординарный. Такой поток называется простейшим (или стационарным пуассоновским) потоком.

Тема 20.

Тема 21. Неравенство Маркова ()

Теорема Чебышева:

;

Тема 22.

предложена обобщенная формула для нахождения коэффициента регрессии K1 линейного уравнения

Y =K0+K1 X. (1)

Эта формула получена с учетом случайных погрешностей измеряемых характеристик X и Y и имеет вид

, (2)

где,, (3)

sX и sY – среднеквадратические отклонения величин X и Y, rXY – коэффициент корреляции между X и Y, dX и dY – случайные среднеквадратические погрешности измерения X и Y для рассматриваемого массива данных. В [1] показано, что все известные формулы для коэффициентов регрессии являются частными случаями полученного аналитического выражения (2) и определены условия их использования.

Тема 23.

. Точечные оценки параметров генеральной совокупности Оценка параметра — определенная числовая характеристика, полученная из выборки. Точечной называют статистическую оценку, которая определяется одним числом. В качестве точечных оценок параметров генеральной совокупности используются соответствующие выборочные характеристики. Теоретическое обоснование возможности использования этих выборочных оценок для суждений о характеристиках и свойствах генеральной совокупности дают закон больших чисел и центральная предельная теорема Ляпунова. Несмещенной называют точечную оценку, математическое ожидание которой равно оцениваемому параметру при любом объеме выборки. Смещенной называют точечную оценку, математическое ожидание которой не равно оцениваемому параметру. Выборочная средняя является точечной оценкой генеральной средней, т. е. Несмещенной оценкой генеральной средней (математического ожидания)служит выборочная средняя. Генеральная дисперсия имеет две точечные оценки: — выборочная дисперсия, которая исчисляется при н 30; S^2 — исправленная выборочная дисперсия, которая исчисляется при n < 30. Причем в математической статистике доказывается, что При больших объемах выборки и S^2практически совпадают. Смещенной оценко й генеральной дисперсии служит выборочная дисперсия. Генеральное среднее квадратическое отклонение также имеет две точечные оценки: — выборочное среднее квадратическое отклонение и S — исправленное выборочное среднее квадратическое отклонение. используется для оценивания при п 30, a S для оценивания при п < 30; пpи этом

Интервальные оценки параметров генеральной совокупности Интервальной оценкой называют оценку, которая определяется двумя числами — концами интервала, который с определенной вероятностью накрывает неизвестный параметр генеральной совокупности. Интервал, содержащий оцениваемый параметр генеральной совокупности, называют доверительным интервалом. Для его определения вычисляется предельная ошибка выборки, позволяющая установить предельные границы, в которых с заданной вероятностью (надежностью) должен находиться параметр генеральной совокупности.

Предельная ошибка выборки равна t-кратному числу средних ошибок выборки. Коэффициент t позволяет установить, насколько надежно высказывание о том, что заданный интервал содержит параметр генеральной совокупности. Если выбирается коэффициент таким, что высказывание в 95% случаев окажется правильным и только в 5% — неправильным, то говорится, что: со статистической надежностью в 95% доверительный интервал выборочной статистики содержит параметр генеральной совокупности. Статистической надежности в 95% соответствует доверительная вероятность — 0,95. В 5% случаев утверждение «параметр принадлежит доверительному интервалу» будет неверным, т. е. 5% задает уровень значимости () или 0,05 вероятность ошибки. Обычно в статистике уровень значимости выбирают таким, чтобы он не превысил 5% (α < 0,05). Доверительная вероятность и уровень значимости дополняют друг друга до 1 (или 100%) и определяют надежность статистического высказывания. С помощью доверительного интервала можно оценить не только генеральную среднюю, но и другие неизвестные параметры генеральной совокупности.

Для оценки математического ожидания а (генеральной средней) нормально распределенного количественного признака X по выборочной средней при известном среднем квадратическом отклонении а генеральной совокупности (на практике — при большом объеме выборки, т. е. при п 30) и собственно-случайном повторном отборе формула (5.5) примет вид (6.6) где tопределяется по таблицам функции Лапласа (приложение 2) из соотношения; — среднее квадратическое отклонение; п — объем выборки (число обследованных единиц).

Для оценки математического ожидания а (генеральной средней) нормально распределенного количественного признака X по выборочной средней при известном среднем квадратическом отклонении генеральной совокупности (при большом объеме выборки, т. е. при п 30) и собственно-случайном бесповторном отборе формула (5.6) примет вид.

(6.7)

Для оценки математического ожидания а (генеральной средней) нормально распределенного количественного признака Xпо выборочной средней при неизвестном среднем квадратическом отклонении генеральной совокупности (на практике — при малом объеме выборки, т. е. при п < 30) и собственно-случайном повторном отборе формула (6.6) будет иметь вид (6.8) где tопределяется по таблицам Стьюдента (приложение 5), по уровню значимости и числу степеней свободы k = п - 1; — исправленное выборочное среднее квадратическое отклонение; п — объем выборки. Для оценки математического ожидания а (генеральной средней) нормально распределенного количественного признака X по выборочной средней при неизвестном среднем квадратическом отклонении генеральной совокупности (при малом объеме выборки, т. е. при п < 30) и собственно-случайном бесповторном отборе формула (5.8) примет вид (6.9) Для оценки генеральной доли р нормально распределенного количественного признака по выборочной доле w = m/п (при большом объеме выборки, т. е. при п 30) и собственно-случайном повторном отборе формула (6.5) будет иметь вид где tопределяется по таблицам функции Лапласа (приложение 2) из соотношения 2Ф0(t) =; w— выборочная доля; п — объем выборки (число обследованных единиц); Для оценки генеральной доли р нормально распределенного количественного признака по выборочной доле w= т/п (при большом объеме выборки, т. е. при п 30) и собственно-случайном бесповторном отборе формула (5.10) примет вид,(6.11) Для оценки генеральной доли р нормально распределенного количественного признака по выборочной доле w ~ т/п (при малом объеме выборки, т. е. при п < 30) и собственно-случайном повторном отборе формула (6.10) примет вид где tопределяется по таблицам Стьюдента (приложение 5), по уровню значимости а = 1 - и числу степеней свободы k — п - 1. Для оценки генеральной доли р нормально распределенного количественного признака по выборочной доле w= т/п (при малом объеме выборки, т. е. при п < 30) и собственно-случайном бесповторном отборе формула (6.12) будет иметь вид

Доверительный интервал для дисперсии По закону c 2 ("хи-квадрат") распределена сумма n квадратов независимых нормально распределенных величин, каждая из которых имеет математическое ожидание, равное 0, и дисперсию, равную 1. Очевидно, у этого закона один параметр n, получивший название - "число степеней свободы". Используя элементарные знания теории вероятностей, легко показать, что математическое ожидание Mc 2n = n, дисперсия Dc 2n = 2n, плотность распределения p(c 2n) имеет один максимум, который при n = 1 и n = 2 лежит в точке c 2n = 0, а затем с ростом n сдвигается в сторону увеличения c 2n. При очень больших n (n > 30) распределение, как следует из центральной предельной теоремы, практически неотличимо от нормального с соответствующими значениями матeматического ожидания и дисперсии. Можно показать, что комбинация Здесь: n - объем выборки; Sx2 - оценка дисперсии результата измерения х, определенная по формуле (1.2); s 2 - "истинная" дисперсия результата измерения, т.е. оцениваемый параметр, который нам не известен; символ " ~ " здесь и в дальнейшем использован для сокращения записи вместо слов "распределено по закону". Рассмотрим на примере, как закон (2.1) можно использовать для построения доверительного интервала для дисперсии. Допустим, что мы создали новую установку для измерения длины волны l в оптическом спектре. Нас интересует оценка случайной погрешности измерений на этой установке, т.е. какова дисперсия значений длин волн, полученных на нашей установке. Осветим установку источником с паспортизованной длиной волны (например,

l 0= 632,8 нм) и выполним 5 измерений. Получим выборку из пяти значений: l 1= 633.1 нм, l 2 = 632.9 нм, l 3 = 633.4 нм, l 4 = 633.3 нм, l 5= 632.5 нм. Вычислим согласно (1.1) и (1.2): = 633.04 нм, Sl 2 = 0.128 нм2.

Проверка статистической гипотезы о мат ожидании нормального распределения при известной дисперсии Применение критерия сравнения двух выборочных средних при известных и равных дисперсиях предусматривает вычисление статистики где, - объем -й выборки, В случае принадлежности наблюдений нормальным законам статистика подчиняется стандартному нормальному закону.

Проверка гипотезы о равенстве дисперсии Проверяемая гипотеза о постоянстве дисперсии выборок объема имеет вид:. (1) а конкурирующая с ней гипотеза – (2) где неравенство выполняется, по крайней мере, для одной пары индексов, Статистика для проверки гипотезы имеет вид Степенями свободы для распределения статистики являются число выборок и..

Тема 24.


Транспортная задача

Задача отличается определенностью экономической характеристики, особенностью матема­тической формы, наличием специфических методов решения. Транспорт­ная задача относится к классу распределительных задач. Она может использоваться не только для планирования перевозок, но и для реше­ния задач о рациональном размещении производства, об оптимальном использовании кадров, о назначениях и т.п.

Особенности транспортной задачи:

· производится однотипная продукция;

· ограничения задаются в виде равенств;

· каждая переменная входит в два ограничения;

· коэффициенты при переменных в ограничениях равны единице;

· число линейно независимых ограничений равно (m + n – l),

где m - число поставщиков, n - число потребителей.

Целевая функция (минимизация транспортных расходов)

Ограничения по запасам поставщиков

Ограничения по заявкам потребителей

Условие неотрицательности переменных

Индексные переменные

Условные обозначения:

i - число поставщиков;

j - число потребителей;

Е - целевая функция;

- запасы 1-го поставщика;

- заявка j-ro потребителя;

- количество продукции, перевозимой от i-го поставщика к j-му потребителю по оптимальному плану.

Так как транспортная задача является задачей линейного прог­раммирования, для ее решения можно использовать симплекс-метод. Од­нако в силу отмеченных особенностей подобных задач, для их решения были разработаны более простые методы (например, метод потенциалов).

Метод потенциалов включает два этапа: нахождение опорного решения; нахождение оптимального решения.

Для нахождения опорного решения применяют метод северо-западного угла, метод минимального элемента или метод последовательного приближения. Опорное решение отвечает ограничениям, но не минимизирует целевую функцию.

Для нахождения оптимального решения используется метод потенциалов, использующий дополнительные переменные: - потенциал поставщика; - потенциал потребителя.

Для базисных клеток должно соблюдаться условие. Для свободных клеток вводят фиктивные стоимости перевозок.

Текущий план оценивается по величине, называемой оценкой перевозок:. Очевидно, что в оптимальном плане у всех базисных клеток.

Метод потенциалов можно применять только к закрытым задачам (запасы поставщиков должны равняться заявкам потребителей). Исходные параметры модели ТЗ

a) n – количество пунктов отправления, m – количество пунктов назначения.

b) – запас продукции в пункте отправления () [ед. тов.].

c) – спрос на продукцию в пункте назначения () [ед. тов.].

d) – тариф (стоимость) перевозки единицы продукции из пункта отправления в пункт назначения [руб./ед. тов.].


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: