Геометрическая вероятность. Чтобы преодолеть недостаток классического опре­деления вероятности, состоящий в том, что оно непри­менимо к испытаниям с бесконечным числом исходов

Чтобы преодолеть недостаток классического опре­деления вероятности, состоящий в том, что оно непри­менимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности.

При геометрическом подходе к определению вероятности в качестве про­странства Q элементарных событий рассматривается произвольное множество конечной меры на прямой, плоскости или в пространстве.

Событиями называются измеримые всевозможные подмножества множества Q.

В конкретных задачах испытание интерпретируется как случайный выбор точки в некоторой области Q, а событие А — как попадание выбранной точки в некоторую под­область А области Q. При этом требуется, чтобы все точки области Q имели оди­наковую возможность быть выбранными. Это требование обычно выражается словами «наудачу», «случайным образом» и т. Д.

Геометрическая вероятность – вероятность попа­дания точки в область (отрезок, часть плоскости или пространства).

Приведенные определения являются частными случаями общего определения геометрической вероятности. Обозначим меру (длину, площадь, объем) области через m(е). При этом вероятность попадания точки, брошенной наудачу в область g - часть области G, равна отношению мер областей g и G, соответственно равнее m(g) и m(G).

Формула г еометрической вероятности в этом случае имеет вид: P=m(g): m(G)

В случае классического определения вероят­ность достоверного (невозможного) события равна единице (нулю); справедливы и обратные утверждения (например, если вероятность события равна нулю, то событие невозможно).

В случае геометри­ческого определения вероятности обратные утверждения не имеют места. Например, вероятность попадания брошенной точки в одну определенную точку области G равна нулю, однако это событие может произойти, и, следовательно, не является невозможным.

Геометрическая вероятность на отрезке.

Пусть отрезок m составляет часть отрезка L. На отре­зок L наудачу поставлена точка. Это означает выполнение следующих предположений: поставленная точка может оказаться в любой точке отрезка L, вероятность попадания точки на отрезок m пропорциональна длине этого отрезка и не зависит от его расположения относи­тельно отрезка L. В этих предположениях вероятность попадания точки на отрезок m определяется равенством

Р =( Длина m): /Длина L).

Пример. Вычислить геометрические вероятности на отрезке

1. На отрезок ОА длины L числовой оси Ох наудачу поставлена точка В(х). Найти вероятность того, что меньший из отрезков и ВА имеет длину, большую L/3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине от­резка и не зависит от его расположения на числовой оси,

Решение. Разобьем отрезок ОА точками С и D на 3 равные части. Требование задачи будет выполнено, если точка В(х) попа­дет на отрезок CD длины L/3. Искомая вероятность

P=(L/3): L= l/3.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: