Электромикрофотография субчастиц рибсосом (слева) и одна из первых моделей малой 30S субчастицы бактерий (справа), 1974 г

Одни из первых «фотографий» рибосом были получены в пущинском Институте белка под руководством академика А.С. Спирина. В то же время в группах Г. Штоффлера, И. Шталя (Германия) и Дж. Лэйка (США) для детекции положений рибосомных белков на поверхности рибосомных субъединиц стали использовать иммуно-ЭМ, для чего рибосомные субчастицы обрабатывали антителами против какого-либо белка и смотрели, в каком месте они присоединяются, связываясь с эпитопами (фрагментами молекулы, специфично узнаваемые соответствующими антителами) целевого белка. Однако, точность определения была невысокой, кроме того, у некоторых белков было несколько антигенных детерминант, удаленных друг от друга на поверхности субчастицы, а у некоторых белков не было ни одной.

Резкий скачок в информативности данного метода произошел в середине 90-х годов, когда в лаборатории Й. Франка (США) был разработан новый подход - крио-ЭМ, основанный на получении электронных микрофотографий рибосом при очень низкой температуре (в жидком азоте, T= -196°C). Чтобы получить крио-ЭМ фотографии, монослой рибосом наносят на тонкую углеродную решетку. В 2000 г. были разработаны программы, позволяющие сепарировать электронную плотность в крио-ЭМ на белковую и рРНК-овую составляющие и подгонять крио-ЭМ карты к атомным моделям рибосомных субчастиц прокариот (к этому времени уже удалось расшифровать структуру менее сложно устроенных прокариотических рибосом с помощью метода РСА, речь о котором пойдет далее, тогда как никаких моделей эукариотических рибосом ещё получить не удалось). Это позволило распознавать фрагменты консервативного «кора» РНК («кор» - сердцевина, та часть структуры, которая в процессе эволюции оставалась практически неизменной от самых примитивных бактерий до самых высоко организованных организмов, включая человека) и рибосомные белки, имеющие прокариотических гомологов. За 10-14 лет, прошедших с момента изобретения метода, с помощью крио-ЭМ научились получать изображения рибосом с разрешением 7-8 Ȧ (это позволяет видеть, например, отдельные витки α-спиралей белков), что всего в 2-3 раза меньше разрешения, которое обычно дает рентгеноструктурный анализ. Резкое увеличение разрешающей способности в случае крио-ЭМ связано, в частности, с тем, что при очень низкой температуре «замораживаются» тепловые движения структурных элементов рибосомы, которые сильно размывают изображение, полученное с помощью «обычной» ЭМ. В прошлом, 2013 году в лаборатории Бэкманна были получены крио-ЭМ модели рибосом человека с довольно высоким разрешением 5.4 Ȧ [5].


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: